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Abstract

In this Ph.D. thesis, we establish new bounds for some objects related to the Riemann

zeta-function and L-functions, under the Riemann hypothesis, making use of fine tools from

analytic number theory, harmonic analysis, and approximation theory. Firstly, we use ex-

tremal bandlimited approximations to show bounds for the high moments of the argument

of the Riemann zeta-function and for a family of L-functions. Secondly, we use the res-

onance method of Soundararajan, in the version of Bondarenko and Seip, to obtain large

values for the high moments of the argument function. Finally, we improve some estimates

related with the distribution of the zeros of the Riemann zeta-function, using the approach

of pair correlation of Montgomery and tools from semidefinite programming.
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Resumo

Nesta tese de Doutorado estabelecemos novos limites para alguns objetos relaciona-

dos à função zeta de Riemann e a uma classe de L-funções, sob a hipótese de Riemann,

fazendo uso de ferramentas finas da teoria anaĺıtica dos números, análise harmônica e teoria

da aproximação. Em primeiro lugar, usamos aproximações extremais de banda limitada

para mostrar cotas para os momentos do argumento da função zeta de Riemann e para uma

famı́lia de L-funções. Em segundo lugar, usamos o método de ressonância de Soundarara-

jan, na versão de Bondarenko e Seip, para obter grandes valores para os momentos da

função argumento. Finalmente, melhoramos algumas estimativas relacionadas com a dis-

tribuição dos zeros da função zeta de Riemann, usando a abordagem de correlação de pares

de Montgomery e ferramentas de programação semidefinida.
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Chapter 1

Introduction

This Ph.D. thesis is focused on the use of different techniques in analytic number theory,

harmonic analysis and approximation theory to establish new bounds for some objects

related to the Riemann zeta-function and a family of L-functions. The thesis compiles the

developments of the following research articles:

[A1] Bounding Snptq on the Riemann hypothesis (with E. Carneiro), Mathematical Pro-

ceedings of the Cambridge Philosophical Society, vol.164 (2018), 259-283.

[A2] Bandlimited approximations and estimates for the Riemann zeta-function (with E.

Carneiro and M. B. Milinovich), to appear in Publicacions Matemàtiques.

[A3] A note on entire L-functions, to appear in Bulletin of the Brazilian Mathematical

Society.

[A4] Extreme values for Snpσ, tq near the critical line, to appear in Journal of Number

Theory.

[A5] Pair correlation estimates for the zeros of the zeta-function via semidefinite program-

ming (with F. Gonçalves and D. de Laat), preprint, arXiv:1810.08843 (2018).

In Chapter 2 we find new upper and lower bounds for the high moments Snptq of the

argument of the Riemann zeta-function on the critical line, under the Riemann hypothesis.

This extends the work of E. Carneiro, V. Chandee and M. B. Milinovich [16] for the case

n “ 0 and n “ 1 and substantially improves the previous result of T. Wakasa [91] for the

case n ě 2. Our method uses special extremal functions of exponential type derived from

the Gaussian subordination framework of E. Carneiro, F. Littmann and J. Vaaler [25], and

an optimized interpolation argument. This chapter describes the article [A1] which is a joint

work with E. Carneiro (IMPA - Brazil).

In Chapter 3 we extend the results of Chapter 2 to the critical strip. In particular,

this recovers the results on the critical line and sharpens the error terms in such estimates.

New upper and lower bounds for the real part of the logarithmic derivative of the Riemann
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zeta-function in the critical strip are obtained. This chapter describes the article [A2] which

is a joint work with E. Carneiro and M. Milinovich (University of Mississippi - USA).

In Chapter 4 we discuss how to extend the results of the previous chapters to a general

family of L-functions in the framework of [56, Chapter 5], under the generalized Riemann

hypothesis. This also extends the work of E. Carneiro, V. Chandee and M. Milinovich [17]

and the work of E. Carneiro and R. Finder [20]. We also show estimates for the logarithm of

L-functions extending a result of E. Carneiro and V. Chandee [14]. This chapter describes

the article [A3] and the final part of the article [A1].

In Chapter 5 we obtain new estimates for the extreme values of the argument of the

Riemann zeta-function and its high moments near the critical line assuming the Riemann

hypothesis. These results extend the work of A. Bondarenko and K. Seip [9]. The main

tools are certain convolution formulas and a version of the resonance method. This work

can be seen as the counterpart of the estimates in [A2] close to the critical line. In particular

we get some omega results for the functions Snptq. This chapter describes the results of the

article [A4].

In Chapter 6 we give improved asymptotic bounds for several quantities related to the

zeros of the Riemann zeta-function under H. Montgomery’s pair correlation approach [72].

Similar results are obtained for the derivative of the Riemann ξ-function and a family of

primitive Dirichlet L-functions. The key idea is to replace the usual bandlimited auxiliary

functions by the class of functions used in the linear programming bounds developed by H.

Cohn and N. Elkies [32] for the sphere packing problem. The advantage of this framework

is that it reduces the problems to certain convex optimization problems that can be solved

numerically via semidefinite programming. This chapter describes the results of the article

[A5] which is a joint work with F. Gonçalves (Universität Bonn - Germany) and D. de Laat

(MIT - USA).

1.1 Notation

Throughout this thesis, we use the classical notation for the usual elements in analytic

number theory and harmonic analysis. We consider the following agreements:

1. For s P C we write s “ σ ` it, where σ and t are real numbers.

2. For f P L1pRq we denote by pf the Fourier transform of f , defined by

pfpξq “

ż 8

´8

fpxq e´2πixξ dx.

3. For every sum over zeros the summands should be repeated according to the multi-

plicity of the zero.

2



Also, we consider the following:

a) Zě0 denotes the set of the integer numbers t0, 1, 2, 3, 4, ... u.

b) Γpsq denotes the Gamma function.

c) Λpnq denotes the von Mangoldt function defined to be log p if n “ pm with p a prime

number and m ě 1 an integer, and zero otherwise.

d) Lk denotes the Laguerre polynomial of degree k with parameter ´1{2 defined by Lkpzq “
řn
j“0

`

n´1{2
n´j

˘

p´zqj

j! .

e) supp pfq denotes the set tx P Dompfq : fpxq ‰ 0u.

f) f` denotes the function defined by f`pxq “ maxtfpxq, 0u.

g) f “ Opgq (or f ! g) means |fptq| ď C |gptq| for some constant C ą 0 and for t sufficiently

large. In the subscript we indicate the parameters in which such constant C may depend

on.

h) f “ opgq means that limtÑ8 fptq{gptq “ 0.

i) f “ Ω`pgq means fptq ą C gptq for some constant C ą 0 and for some arbitrarily large

values of t.

j) f “ Ω´pgq means fptq ă ´C gptq for some constant C ą 0 and for some arbitrarily large

values of t.

k) f “ Ω˘pgq means that f “ Ω`pgq and f “ Ω´pgq.

l) f “ Ωpgq means that limtÑ8 fptq{gptq ‰ 0.

3



Chapter 2

The Riemann zeta-function and

bandlimited approximations I

This chapter is comprised of the paper [A1]. Our main goal here is to improve, under the

Riemann hypothesis, the known upper and lower bounds for the high moments tSnptquně2

of the argument of the Riemann zeta-function on the critical line, extending the work of

Carneiro, Chandee and Milinovich [16] for Sptq and S1ptq. Our argument relies on the

use of certain extremal majorants and minorants of exponential type derived from the

Gaussian subordination framework of Carneiro, Littmann and Vaaler [25] and an optimized

interpolation argument.

2.1 The Riemann zeta-function

The Riemann zeta-function ζpsq is the function defined by

ζpsq “
8
ÿ

n“1

1

ns

for Re s ą 1. Using the fundamental theorem of arithmetic, one clearly sees the first

connection of the Riemann zeta-function with the prime numbers through the relation

ζpsq “
ź

p prime

ˆ

1´
1

ps

˙´1

, (2.1.1)

where the product is over all prime numbers and is absolutely convergent for Re psq ą 1.

In 1859, Riemann [80] showed that ζpsq has an analytic continuation to the complex

plane. In fact, the Riemann ξ-function defined by

ξpsq “
1

2
s ps´ 1qπ´

s
2 Γ

´s

2

¯

ζpsq (2.1.2)

is an entire function of order 1 and satisfies the functional equation ξpsq “ ξp1´sq. Riemann

4



also showed a more deeper connection between the behavior of the function ζpsq and the

distribution of the prime numbers. To be more especific, he showed an explicit formula that

expresses the number of primes less than a number x in terms of the zeros of ζpsq.

It is known that the Riemann zeta-function only has zeros in Re s ă 0 in each point

s “ ´2k with k P N. These are called the “trivial zeros” of ζpsq and are exactly the poles

of the Gamma function that appears in (2.1.2). By the Euler product (2.1.1), the Riemann

zeta-function has no zeros in Re psq ą 1. Therefore, the “non-trivial zeros” of ζpsq lie in

the critical strip 0 ď Re s ď 1. Moreover, using (2.1.2) we see that the non-trivial zeros

of ζpsq are the zeros of ξpsq. It is also known that ζpsq has a countably infinite number of

non-trivial zeros and that they are symmetric with respect to the real-axis and the critical

line Re s “ 1
2 . In the course of his paper [80], Riemann says that he considers it “very likely”

that the non-trivial zeros have real part equal to 1
2 , but that he has been unable to prove

that this is true. This harmless affirmation is one of the most important open problems in

pure mathematics.

Conjecture 2.1 (Riemann hypothesis - 1859). All non-trivial zeros of ζpsq have Re s “ 1
2 .

The experience of Riemann’s successors with the Riemann hypothesis has been the same

as Riemann’s—they also consider its truth “very likely” and they also have been unable to

prove it. Hilbert included the problem of proving the Riemann hypothesis in his list [52] of the

most important unsolved problems which confronted mathematics in 1900, and the attempt

to solve this problem has occupied the best efforts of many of the best mathematicians of

the twentieth century. It is now unquestionably the most celebrated problem in mathematics

and it continues to attract the attention of the best mathematicians, not only because it has

gone unsolved for so long but also because it appears tantalizingly vulnerable and because its

solution would probably bring to light new techniques of far-reaching importance.1

For an overview of the theory of the Riemann zeta-function, we refer the reader to the

classic books by Davenport [36], Edwards [37], Ivic [54, 55], Iwaniec and Kowalski [56],

Montgomery and Vaughan [74], and Titchmarsh [86] as well as the references contained

within these sources.

2.2 Behavior on the critical line: Snptq

Let Nptq denote the number of non-trivial zeros ρ “ β ` iγ of ζpsq with 0 ă γ ď t,

counting multiplicities (zeros with ordinate γ “ t are counted with weight 1
2). In the study

of the distribution of the zeros of ζpsq, Riemann [80] stated the asymptotic formula for Nptq,

which was later proved by von Mangoldt [70] in 1895. For t ě 2 we have

Nptq “
t

2π
log

t

2π
´

t

2π
`

7

8
` Sptq `O

ˆ

1

t

˙

, (2.2.1)

1H. M. Edwards, Riemann’s zeta-function, Pag. 6.
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where Sptq is defined as follows: If t is not the ordinate of a zero of ζpsq we define

Sptq “ 1
π arg ζ

`

1
2 ` it

˘

,

where the argument is obtained by a continuous variation along straight line segments

joining the points 2, 2 ` it and 1
2 ` it, with the convention that arg ζp2q “ 0. If t is the

ordinate of a zero of ζpsq we define

Sptq “ 1
2 lim
εÑ0

tSpt` εq ` Spt´ εqu .

The function Sptq has an intrinsic oscillating character and is naturally connected to

the distribution of the non-trivial zeros of ζpsq via the relation (2.2.1). Useful information

on the qualitative and quantitative behavior of Sptq is encoded in its high moments Snptq.

Setting S0ptq “ Sptq we define, for n ě 1 and t ą 0,

Snptq “

ż t

0
Sn´1pτq dτ ` δn , (2.2.2)

where δn are constants given by (see for instance [41, p. 2])

δ2k´1 “
p´1qk´1

π

ż 8

1
2

ż 8

σ2k´2

. . .

ż 8

σ2

ż 8

σ1

log |ζpσ0q| dσ0 dσ1 . . . dσ2k´2

for n “ 2k ´ 1, with k ě 1, and

δ2k “ p´1qk´1

ż 1

1
2

ż 1

σ2k´1

. . .

ż 1

σ2

ż 1

σ1

dσ0 dσ1 . . . dσ2k´1 “
p´1qk´1

p2kq! ¨ 22k

for n “ 2k, with k ě 1.

Fujii [41] established some interesting formulas between Snptq and the non-trivial zeros

of ζpsq. Such formulas allowed him to recast the Riemann hypothesis (RH) as follows:

Theorem 2.2 (Fujii, 2001). The following statement is equivalent to the Riemann hypoth-

esis: for any integer n ě 3, we have Snptq “ optn´2q, as tÑ8.

Unconditionally, there are known bounds for the functions Snptq. For the cases n “ 0

and n “ 1 we have the classical bounds Sptq “ Oplog tq and S1ptq “ Oplog tq (see for instance

[86]). For n ě 2, Fujii [41, Theorem 2] established that

Snptq “ On

ˆ

tn´1

log t

˙

.

Under RH, Littlewood [64] (see also Selberg [83]) obtained improved estimates for Snptq.

6



In fact, the classical result of Littlewood [64, Theorem 11] states that, under RH,

Snptq “ O

ˆ

log t

plog log tqn`1

˙

(2.2.3)

for n ě 0. The order of magnitude of (2.2.3) has not been improved over the last ninety

years, and the efforts have hence been concentrated in optimizing the values of the implicit

constants. In the case n “ 0, the best bound under RH is due to Carneiro, Chandee and

Milinovich [16] (see also [17]), who established that

|Sptq| ď

ˆ

1

4
` op1q

˙

log t

log log t
. (2.2.4)

This improved upon earlier works of Goldston and Gonek [46], Fujii [42] and Ramachandra

and Sankaranarayanan [79], who had obtained (2.2.4) with constants C “ 1{2, C “ 0.67

and C “ 1.12, respectively, replacing the constant C “ 1{4.

For n “ 1 the current best bound under RH is also due to Carneiro, Chandee and

Milinovich [16], who showed that

´

´ π

24
` op1q

¯ log t

plog log tq2
ď S1ptq ď

´ π

48
` op1q

¯ log t

plog log tq2
. (2.2.5)

This improved upon earlier works of Fujii [43], and Karatsuba and Korolëv [58], who had

obtained (2.2.5) with the pair of constants pC`, C´q “ p0.32, 0.51q and pC`, C´q “ p40, 40q,

respectively, replacing the pair pC`, C´q “ pπ{48, π{24q.

For n ě 2, under RH, it was recently established by Wakasa [91] that

|Snptq| ď pWn ` op1qq
log t

plog log tqn`1
, (2.2.6)

with the constant Wn given by

Wn “
1

2πn!

#

1

1´ 1
e

`

1` 1
e

˘

n
ÿ

j“0

n!

pn´ jq!

ˆ

1

e
`

1

2j`1e2

˙

`
1

pn` 1q
¨

1
e

`

1` 1
e

˘

1´ 1
e

`

1` 1
e

˘ `
1

npn` 1q
¨

1

1´ 1
e

`

1` 1
e

˘

+

if n is odd, and

Wn “
1

2πn!

#

1

1´ 1
e

`

1` 1
e

˘

n
ÿ

j“0

n!

pn´ jq!

ˆ

1

e
`

1

2j`1e2

˙

`
1

pn` 1q
¨

1
e

`

1` 1
e

˘

1´ 1
e

`

1` 1
e

˘ `
π

2
¨

1

1´ 1
e

`

1` 1
e

˘

+

if n is even.
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2.2.1 Main result

Here we extend the methods of [16] to significantly improve the bound (2.2.6). Our main

result is the following.

Theorem 2.3. Assume the Riemann hypothesis. For n ě 0 and t sufficiently large we have

´
`

C´n ` op1q
˘ log t

plog log tqn`1
ď Snptq ď

`

C`n ` op1q
˘ log t

plog log tqn`1
, (2.2.7)

where C˘n are positive constants given by:

• For n “ 0,

C˘0 “
1

4
.

• For n “ 4k ` 1, with k P Z`,

C´n “
ζpn` 1q

π ¨ 2n`1
and C`n “

p1´ 2´nq ζpn` 1q

π ¨ 2n`1
.

• For n “ 4k ` 3, with k P Z`,

C´n “
p1´ 2´nq ζpn` 1q

π ¨ 2n`1
and C`n “

ζpn` 1q

π ¨ 2n`1
.

• For n ě 2 even,

C`n “ C´n “

«

2
`

C`n`1 ` C
´
n`1

˘

C`n´1 C
´
n´1

C`n´1 ` C
´
n´1

ff1{2

“

?
2

π ¨ 2n`1

«

`

1´ 2´n´2
˘ `

1´ 2´n`1
˘

ζpnq ζpn` 2q

p1´ 2´nq

ff1{2

.

The terms op1q in (2.2.7) are Oplog log log t{ log log tq.2

For n “ 0 and n “ 1 this is a restatement of the result of Carneiro, Chandee and

Milinovich [16]. The novelty here are the cases n ě 2. Observe that C˘n „ 1
π¨2n`1 when

n is odd and large and C˘n „
?

2
π¨2n`1 when n is even and large. We highlight the contrast

between these exponentially decaying bounds and the previously known bounds (2.2.6) of

Wakasa [91] that verify

lim
nÑ8

Wn “
1

2π
`

1´ 1
e

`

1` 1
e

˘˘ “ 0.3203696...

2We remark that the implicit constants in the O´notation in our estimates (as well as in (2.2.3)) are
allowed to depend on n.

8



n C´n C`n Wn Wn {maxtC´n , C
`
n u

2 0.0593564... 0.0593564... 0.6002288... 10.1122762...

3 0.0188406... 0.0215321... 0.3426156... 15.9118250...

4 0.0141490... 0.0141490... 0.3509932... 24.8069103...

5 0.0050598... 0.0049017... 0.3254151... 64.3131985...

6 0.0035192... 0.0035192... 0.3235655... 91.9420229...

7 0.0012387... 0.0012484... 0.3216216... 257.6130647...

8 0.0008792... 0.0008792... 0.3210078... 365.0786196...

9 0.0003111... 0.0003105... 0.3206826... 1030.6078264...

10 0.0002198... 0.0002198... 0.3205263... 1458.2249832...

Table 2.1: Comparison for 2 ď n ď 10.

Table 2.1 puts in perspective the new bounds of our Theorem 2.3 and the previously known

bounds (2.2.6) in the small cases 2 ď n ď 10. The last column reports the improvement

factor.

2.2.2 Strategy outline

Our approach is partly motivated (in the case of n odd) by the ideas of Goldston and

Gonek [46], Chandee and Soundararajan [29], and Carneiro, Chandee and Milinovich [16], on

the use of the Guinand-Weil explicit formula on special functions with compactly supported

Fourier transforms (drawn from [89], [27] and [22, 25], respectively) to bound objects related

to the Riemann zeta-function.

The strategy can be broadly divided into the following four main steps:

Step 1: Representation lemma.

The first step is to identify certain particular functions of a real variable naturally

connected to the high moments Snptq. For each n ě 0 define a normalized function fn :

RÑ R as follows:

• If n “ 2m, for m P Zě0, we define

f2mpxq “ p´1qmx2m arctan

ˆ

1

x

˙

´

m´1
ÿ

k“0

p´1qm´k

2k ` 1
x2m´2k´1´

x

p2m` 1qp1` x2q
. (2.2.8)

• If n “ 2m` 1, for m P Zě0, we define

f2m`1pxq “
1

2m` 1

«

p´1qm`1x2m`1 arctan

ˆ

1

x

˙

`

m
ÿ

k“0

p´1qm´k

2k ` 1
x2m´2k

ff

. (2.2.9)

We show in Lemma 2.5 below that, under RH, Snptq can be expressed in terms of the sum

of a translate of fn over the ordinates of the non-trivial zeros of ζpsq. From the power series
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representation (around the origin)

arctanx “
8
ÿ

k“0

p´1qk

2k ` 1
x2k`1

one can check that f2mpxq !m |x|´3 and f2m`1pxq !m |x|´2 as |x| Ñ 8. This rather

innocent piece of information is absolutely crucial in our argument.

Step 2: Extremal functions.

Our tool to evaluate sums over the non-trivial zeros of ζpsq is the Guinand-Weil explicit

formula. However, the functions fn defined above do not possess the required smoothness

to allow a direct evaluation. In fact, we have that fn is of class Cn´1pRq but not higher

(the n-th derivative of fn is discontinuous at x “ 0). Note also that f0 is discontinuous at

the origin. Then, it will be convenient to replace fn by one-sided entire approximations of

exponential type in a way that minimizes the L1pRq´error. This is the so called Beurling-

Selberg extremal problem in approximation theory. These special functions have been useful

in several classical applications in number theory (see for instance the excellent survey [89] by

J. D. Vaaler and some of the references therein) and have recently been used in connection

to the theory of the Riemann zeta-function in the works [14, 15, 16, 17, 20, 29, 44, 46].

We shall see that the even functions f2m`1, for m P Zě0, fall under the scope of the

Gaussian subordination framework of [25]. This yields the desired existence and qualitative

description of the Beurling-Selberg extremal functions in these cases (Lemma 2.8 below) and

ultimately leads to the bounds of Theorem 2.3 for n odd. When n is even, our argument

is subtler since the functions f2m are odd. The Gaussian subordination framework for odd

functions [22] only allows us to solve the Beurling-Selberg problem for a class of functions

with a discontinuity at the origin. This is the case, for example, with the function f0pxq “

arctanp1{xq ´ x{p1 ` x2q, and this was explored in [16] to show (2.2.4). For m ě 1, the

functions f2m are all odd and continuous, and the solution of the Beurling-Selberg problem

for these functions is quite a delicate issue and currently unknown. We are then forced to

take a very different path in this case.

Step 3: Guinand-Weil explicit formula and asymptotic analysis.

In the case of n odd, we bound Snptq by applying the Guinand-Weil explicit formula

to the Beurling-Selberg majorants and optimizing the size of the support of the Fourier

transform. This is possible via a careful asymptotic analysis of all the terms that appear in

the explicit formula.

Step 4: Interpolation tools.

Having obtained the desired bounds for all odd n’s, we proceed with an interpolation

argument to obtain the estimate for the even n’s in between, exploring the smoothness of
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Snptq via the mean value theorem. An optimal choice of the parameters involved in the

interpolation argument yields the desired bounds for the even n’s.

2.3 Representation lemma I

Our starting point is the following formula motivated by the work of Selberg [81].

Lemma 2.4. Assume the Riemann hypothesis. For n ě 0 and t ą 0 pt not coinciding with

the ordinate of a zero of ζpsq when n “ 0q we have

Snptq “ ´
1

π
Im

#

in

n!

ż 8

1{2

`

σ ´ 1
2

˘n ζ 1

ζ
pσ ` itq dσ

+

. (2.3.1)

Proof. This result is contained in the work of Fujii [41, Lemmas 1 and 2]. We provide here

a brief sketch of the proof. Let Rnptq be the expression on the right-hand side of (2.3.1).

The validity of the formula for n “ 0 is clear. Proceeding by induction, let us assume

that the result holds for n “ 0, 1, 2, . . . ,m ´ 1. Differentiating under the integral sign and

using integration by parts one can check that R1mptq “ Rm´1ptq “ Sm´1ptq (for m “ 1 we

may restrict ourselves to the case when t does not coincide with the ordinate of a zero of

ζpsq). From (2.2.2) it remains to show that limtÑ0` Rmptq “ δm for m ě 1. This follows by

integrating by parts m times and then taking the limit as tÑ 0`.

The next result establishes the connection between Sn and the functions fn defined in

(2.2.8) - (2.2.9). In the proof of Theorem 2.3 we shall only use the case of n odd, but we

state here the representation for n even as well, as a result of independent interest.

Lemma 2.5 (Representation lemma). For each n ě 0 let fn : R Ñ R be defined as in

(2.2.8) - (2.2.9). Assume the Riemann hypothesis. For t ě 2 pand t not coinciding with an

ordinate of a zero of ζpsq in the case n “ 0q we have:

(i) If n “ 2m, for m P Zě0, then

S2mptq “
p´1qm

πp2mq!

ÿ

γ

f2mpt´ γq ` Op1q. (2.3.2)

(ii) If n “ 2m` 1, for m P Zě0, then

S2m`1ptq “
p´1qm

2πp2m` 2q!
log t´

p´1qm

πp2mq!

ÿ

γ

f2m`1pt´ γq ` Op1q. (2.3.3)

The above sums run over the ordinates of the non-trivial zeros ρ “ 1
2 ` iγ of ζpsq.
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Proof. We split the proof into two cases: n odd and n even.

Case 1. n odd: Write n “ 2m` 1. It follows from Lemma 2.4 and integration by parts that

S2m`1ptq “ ´
1

π
Im

#

i2m`1

p2m` 1q!

ż 8

1{2

`

σ ´ 1
2

˘2m`1 ζ 1

ζ
pσ ` itq dσ

+

“
p´1qm`1

πp2m` 1q!
Re

#

ż 8

1{2

`

σ ´ 1
2

˘2m`1 ζ 1

ζ
pσ ` itq dσ

+

“
p´1qm

πp2mq!
Re

#

ż 8

1{2

`

σ ´ 1
2

˘2m
log ζpσ ` itq dσ

+

“
p´1qm

πp2mq!

#

ż 3{2

1{2

`

σ ´ 1
2

˘2m
log |ζpσ ` itq| dσ

+

`Op1q.

(2.3.4)

The idea is to replace the integrand by an absolutely convergent sum over the zeros of ζpsq

and then integrate term-by-term. Using the Hadamard’s factorization formula (cf. [36,

Chapter 12]) for the Riemann ξ-function defined in (2.1.2), we have

ξpsq “ eA`Bs
ź

ρ

ˆ

1´
s

ρ

˙

es{ρ ,

where ρ “ β ` iγ runs over the non-trivial zeros of ζpsq, A P R and B “ ´
ř

ρ Re p1{ρq.

Therefore, assuming the Riemann hypothesis, it follows that

ˇ

ˇ

ˇ

ˇ

ˇ

ξpσ ` itq

ξp3
2 ` itq

ˇ

ˇ

ˇ

ˇ

ˇ

“
ź

γ

˜

`

σ ´ 1
2q

2 ` pt´ γq2

1` pt´ γq2

¸1{2

. (2.3.5)

Hence

log |ξpσ ` itq| ´ log
ˇ

ˇξ
`

3
2 ` it

˘ˇ

ˇ “
1

2

ÿ

γ

log

˜

`

σ ´ 1
2q

2 ` pt´ γq2

1` pt´ γq2

¸

.

By Stirling’s formula for Γpsq (cf. [36, Chapter 10]) we obtain

log |ζpσ ` itq| “
`

3
4 ´

σ
2

˘

log t´
1

2

ÿ

γ

log

˜

1` pt´ γq2
`

σ ´ 1
2q

2 ` pt´ γq2

¸

`Op1q, (2.3.6)

uniformly for 1{2 ď σ ď 3{2 and t ě 2. Inserting (2.3.6) into (2.3.4) yields

S2m`1ptq “
p´1qm

πp2mq!

˜

ż 3{2

1{2

`

σ ´ 1
2

˘2m `

3
4 ´

σ
2

˘

dσ

¸

log t

´
p´1qm

2πp2mq!

ż 3{2

1{2

ÿ

γ

`

σ ´ 1
2

˘2m
log

˜

1` pt´ γq2

pσ ´ 1
2q

2 ` pt´ γq2

¸

dσ `Op1q

“
p´1qm

2πp2m` 2q!
log t
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´
p´1qm

2πp2mq!

ÿ

γ

ż 3{2

1{2

`

σ ´ 1
2

˘2m
log

˜

1` pt´ γq2

pσ ´ 1
2q

2 ` pt´ γq2

¸

dσ `Op1q

“
p´1qm

2πp2m` 2q!
log t´

p´1qm

πp2mq!

ÿ

γ

f2m`1pt´ γq `Op1q, (2.3.7)

where the function f2m`1 is (momentarily) defined by

f2m`1pxq “
1

2

ż 3{2

1{2

`

σ ´ 1
2

˘2m
log

˜

1` x2

pσ ´ 1
2q

2 ` x2

¸

dσ , (2.3.8)

and the interchange between the sum and integral in (2.3.7) is justified by monotone con-

vergence since all the terms involved are nonnegative. Starting from (2.3.8), a change of

variables and the use of formula [50, 2.731] yield

f2m`1pxq “
1

2

ż 1

0
σ2m log

ˆ

1` x2

σ2 ` x2

˙

dσ

“
logp1` x2q

2p2m` 1q
´

1

2

ż 1

0
σ2m logpσ2 ` x2q dσ

“
logp1` x2q

2p2m` 1q
´

1

2p2m` 1q

„

σ2m`1 logpσ2 ` x2q ` p´1qm2x2m`1 arctan
´σ

x

¯

´ 2
m
ÿ

k“0

p´1qm´k

2k ` 1
x2m´2kσ2k`1



ˇ

ˇ

ˇ

ˇ

ˇ

1

0

“
1

p2m` 1q

«

p´1qm`1x2m`1 arctan

ˆ

1

x

˙

`

m
ÿ

k“0

p´1qm´k

2k ` 1
x2m´2k

ff

.

This shows that the two definitions (2.2.9) and (2.3.8) agree, which completes the proof in

this case.

Case 2. n even: Write n “ 2m. From Lemma 2.4 it follows that

S2mptq “ ´
1

π
Im

#

i2m

p2mq!

ż 8

1{2

`

σ ´ 1
2

˘2m ζ 1

ζ
pσ ` itq dσ

+

“
p´1qm`1

πp2mq!
Im

#

ż 3{2

1{2

`

σ ´ 1
2

˘2m ζ 1

ζ
pσ ` itq dσ

+

`Op1q.

(2.3.9)

We again replace the integrand by an absolutely convergent sum over the non-trivial zeros

of ζpsq. Let s “ σ` it. If s is not a zero of ζpsq, then the partial fraction decomposition for

ζ 1psq{ζpsq (cf. [36, Chapter 12]) and Stirling’s formula for Γ1psq{Γpsq (cf. [36, Chapter 10])

imply that

ζ 1

ζ
psq “

ÿ

ρ

ˆ

1

s´ ρ
`

1

ρ

˙

´
1

2

Γ1

Γ

ˆ

s

2
` 1

˙

`Op1q

“
ÿ

ρ

ˆ

1

s´ ρ
`

1

ρ

˙

´
1

2
log

ˆ

t

2

˙

`Op1q

(2.3.10)

13



uniformly for 1
2 ď σ ď 3

2 and t ě 2, where the sum runs over the non-trivial zeros ρ of ζpsq.

Assume that t is not the ordinate of a zero of ζpsq. Then, from (2.3.9), (2.3.10) and the

Riemann hypothesis, it follows that

S2mptq “
p´1qm`1

πp2mq!

ż 3{2

1{2

`

σ ´ 1
2

˘2m
Im

"

ζ 1

ζ
pσ ` itq

*

dσ `Op1q

“
p´1qm`1

πp2mq!

ż 3{2

1{2

`

σ ´ 1
2

˘2m
Im

"

ζ 1

ζ
pσ ` itq ´

ζ 1

ζ

`

3
2 ` it

˘

*

dσ `Op1q

“
p´1qm

πp2mq!

ż 3{2

1{2

`

σ ´ 1
2

˘2m
ÿ

γ

#

pt´ γq

pσ ´ 1
2q

2 ` pt´ γq2
´

pt´ γq

1` pt´ γq2

+

dσ `Op1q

“
p´1qm

πp2mq!

ÿ

γ

ż 3{2

1{2

#

pσ ´ 1
2q

2mpt´ γq

pσ ´ 1
2q

2 ` pt´ γq2
´
pσ ´ 1

2q
2mpt´ γq

1` pt´ γq2

+

dσ `Op1q

“
p´1qm

πp2mq!

ÿ

γ

«

m
ÿ

j“1

p´1qj`1 pt´ γq
2j´1

2m´ 2j ` 1
` p´1qmpt´ γq2m arctan

ˆ

1

t´ γ

˙

´
t´ γ

p2m` 1qp1` pt´ γq2q

ff

`Op1q

“
p´1qm

πp2mq!

ÿ

γ

«

m´1
ÿ

k“0

p´1qm´k`1 pt´ γq
2m´2k´1

2k ` 1
` p´1qmpt´ γq2m arctan

ˆ

1

t´ γ

˙

´
t´ γ

p2m` 1qp1` pt´ γq2q

ff

`Op1q

“
p´1qm

πp2mq!

ÿ

γ

f2mpt´ γq `Op1q , (2.3.11)

where the interchange between the sum and the integral is justified by dominated conver-

gence since f2mpxq !m |x|´3 as |x| Ñ 8. Finally, if m ě 1, both sides can be extended

continuously when t is the ordinate of a zero of ζpsq.

Remark 2.6. Observe the introduction of a test point 3
2 ` it in a couple of passages in the

proof above. This seemingly innocent object is actually quite important in dealing with the

convergence issues.

The sum of f2m`1pt ´ γq over the non-trivial zeros in (2.3.3) is too complicated to be

evaluated directly, mainly due to the fact that f2m`1 is only of class C2mpRq. The key

idea to prove Theorem 2.3 in this case is to replace the function f2m`1 in (2.3.3) by an

appropriate majorant or minorant of exponential type (thus with a compactly supported

Fourier transform by the Paley-Wiener theorem). We then apply the following version of

the Guinand-Weil explicit formula which connects the zeros of the zeta-function and the

prime powers.

Lemma 2.7 (Guinand-Weil explicit formula). Let hpsq be analytic in the strip |Im s| ď 1
2`ε

for some ε ą 0, and assume that |hpsq| ! p1 ` |s|q´p1`δq for some δ ą 0 when |Re s| Ñ 8.
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Let hpwq be real-valued for real w. Then

ÿ

ρ

h

˜

ρ´ 1
2

i

¸

“ h

ˆ

1

2i

˙

` h

ˆ

´
1

2i

˙

´
1

2π
php0q log π `

1

2π

ż 8

´8

hpuqRe
Γ1

Γ

ˆ

1

4
`
iu

2

˙

du

´
1

2π

ÿ

ně2

Λpnq
?
n

ˆ

ph

ˆ

log n

2π

˙

` ph

ˆ

´ log n

2π

˙˙

,

where ρ “ β ` iγ are the non-trivial zeros of ζpsq, Γ1{Γ is the logarithmic derivative of the

Gamma function, and Λpnq is the von Mangoldt function.

Proof. The proof of this lemma follows from [56, Theorem 5.12].

2.4 Extremal bandlimited approximations I

Recall that an entire function G : CÑ C is said to have exponential type τ if

lim sup
|z|Ñ8

log |Gpzq|

|z|
ď τ.

The celebrated Paley-Wiener theorem states that a function g P L2pRq has Fourier trans-

form supported in the interval r´∆,∆s if and only if it is equal almost everywhere to the

restriction to R of an entire function of exponential type 2π∆. The term bandlimited is com-

monly used in the applied literature in reference to functions that have compactly supported

Fourier transforms.

The problem of finding one-sided approximations of real-valued functions by entire func-

tions of prescribed exponential type, seeking to minimize the L1pRq´error, is a classical

problem in approximation theory. This problem has its origins in the works of A. Beurl-

ing and A. Selberg, who constructed majorants and minorants of exponential type for the

signum function and characteristic functions of intervals, respectively. The survey [89]

by J. D. Vaaler is the classical reference on the subject, describing some of the histori-

cal milestones of the problem and presenting a number of interesting applications of such

special functions to analysis and number theory. In recent years there has been consid-

erable progress both in the constructive aspects and in the range of applications of such

extremal bandlimited approximations. For the constructive theory we highlight, for in-

stance, the works [22, 25, 27, 51, 60, 66, 67, 68] in the one-dimensional theory and the works

[21, 23, 24, 49, 53] in the multi-dimensional and weighted theory. These allowed new appli-

cations in the theory of the Riemann zeta-function and general L-functions, for instance in

[14, 15, 16, 17, 18, 19, 20, 29, 31, 44, 46, 71].

The appropriate machinery for our purposes is the Gaussian subordination framework of

Carneiro, Littmann and Vaaler [25], a method that allows one to solve the Beurling-Selberg

extremal problem for a wide class of even functions. In particular, functions g : R Ñ R of
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the form

gpxq “

ż 8

0
e´πλx

2
dνpλq, (2.4.1)

where ν is a finite nonnegative Borel measure on p0,8q, fall under the scope of [25]. It turns

out that our functions f2m`1 defined in (2.2.9) are included in this class. We collect the

relevant properties for our purposes in the next lemma. This lemma is the generalization of

[16, Lemma 4] that considers the case m “ 0.

Lemma 2.8 (Extremal functions for f2m`1). Let m ě 0 be an integer and let ∆ ě 1 be a

real parameter. Let f2m`1 be the real valued function defined in (2.2.9), i.e.

f2m`1pxq “
1

2m` 1

«

p´1qm`1x2m`1 arctan

ˆ

1

x

˙

`

m
ÿ

k“0

p´1qm´k

2k ` 1
x2m´2k

ff

.

Then there are unique real entire functions3 g´2m`1,∆ : C Ñ C and g`2m`1,∆ : C Ñ C
satisfying the following properties:

(i) For x P R we have

´
K2m`1

1` x2
ď g´2m`1,∆pxq ď f2m`1pxq ď g`2m`1,∆pxq ď

K2m`1

1` x2
, (2.4.2)

for some positive constant K2m`1 independent of ∆. Moreover, for any complex num-

ber z “ x` iy we have

ˇ

ˇg˘2m`1,∆pzq
ˇ

ˇ !m
∆2

p1`∆|z|q
e2π∆|y|. (2.4.3)

(ii) The Fourier transforms of g˘2m`1,∆, denoted by pg˘2m`1,∆pξq, are continuous functions

supported on the interval r´∆,∆s and satisfy

pg˘2m`1,∆pξq !m 1 (2.4.4)

for all ξ P r´∆,∆s, where the implied constant is independent of ∆.

(iii) The L1´distances of g˘2m`1,∆ to f2m`1 are explicitly given by

ż 8

´8

 

f2m`1pxq ´ g
´
2m`1,∆pxq

(

dx

“
1

∆

ż 3{2

1{2

`

σ ´ 1
2

˘2m
log

˜

1` e´2πpσ´1{2q∆

1` e´2π∆

¸

dσ (2.4.5)

and

ż 8

´8

 

g`2m`1,∆pxq ´ f2m`1pxq
(

dx

3Recall that a real entire function is an entire function whose restriction to R is real-valued.
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“ ´
1

∆

ż 3{2

1{2

`

σ ´ 1
2

˘2m
log

˜

1´ e´2πpσ´1{2q∆

1´ e´2π∆

¸

dσ. (2.4.6)

Proof. For ∆ ě 1, we consider the nonnegative Borel measure ν∆ “ ν2m`1,∆ on p0,8q given

by

dν∆pλq :“

ż 3{2

1{2

`

σ ´ 1
2

˘2m

˜

e´πλpσ´1{2q2∆2
´ e´πλ∆2

2λ

¸

dσ dλ ,

and let F∆ “ F2m`1,∆ be the function

F∆pxq :“

ż 8

0
e´πλx

2
dν∆pλq.

Recall that

1

2
log

˜

x2 `∆2

x2 ` pσ ´ 1{2q2∆2

¸

“

ż 8

0
e´πλx

2

˜

e´πλpσ´1{2q2∆2
´ e´πλ∆2

2λ

¸

dλ.

Multiplying both sides by pσ ´ 1{2q2m and integrating from σ “ 1{2 to σ “ 3{2 yields

1

2

ż 3{2

1{2

`

σ ´ 1
2

˘2m
log

˜

x2 `∆2

x2 ` pσ ´ 1{2q2∆2

¸

dσ

“

ż 3{2

1{2

ż 8

0

`

σ ´ 1
2

˘2m
e´πλx

2

˜

e´πλpσ´1{2q2∆2
´ e´πλ∆2

2λ

¸

dλ dσ

“

ż 8

0
e´πλx

2

ż 3{2

1{2

`

σ ´ 1
2

˘2m

˜

e´πλpσ´1{2q2∆2
´ e´πλ∆2

2λ

¸

dσ dλ

“ F∆pxq,

where the interchange of the integrals is justified since the terms involved are all nonnegative.

It follows from (2.3.8) that

f2m`1pxq “ F∆p∆xq. (2.4.7)

In particular, this shows that the measure ν∆ is finite on p0,8q since

ż 8

0
dν∆pλq “ F∆p0q “ f2m`1p0q “

1

p2m` 1q2
.

By [25, Corollary 17], there is a unique extremal minorant G´∆pzq “ G´2m`1,∆pzq and

a unique extremal majorant G`∆pzq “ G`2m`1,∆pzq of exponential type 2π for F∆pxq, and

these functions are given by

G´∆pzq “

ˆ

cosπz

π

˙2
#

8
ÿ

n“´8

F∆

`

n´ 1
2

˘

`

z ´ n` 1
2

˘2 `
F
1

∆

`

n´ 1
2

˘

`

z ´ n` 1
2

˘

+

(2.4.8)
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and

G`∆pzq “

ˆ

sinπz

π

˙2
#

8
ÿ

n“´8

F∆pnq

pz ´ nq2
`

ÿ

n‰0

F
1

∆pnq

pz ´ nq

+

. (2.4.9)

Hence, the functions g´∆pzq “ g´2m`1,∆pzq and g`∆pzq “ g`2m`1,∆pzq defined by

g´∆pzq :“ G´∆p∆zq and g`∆pzq :“ G`∆p∆zq (2.4.10)

are the unique extremal functions of exponential type 2π∆ for f2m`1. We claim that these

functions verify the conditions of Lemma 2.8. Part(i)

Part(i) We start by observing that

ˇ

ˇf2m`1pxq
ˇ

ˇ !m
1

1` x2
and

ˇ

ˇf 12m`1pxq
ˇ

ˇ !m
1

|x|p1` x2q
. (2.4.11)

This follows from the fact that f2m`1 and f 12m`1 are bounded functions with power series

representations

f2m`1pxq “
1

2m` 1

8
ÿ

k“1

p´1qk´1

p2k ` 2m` 1qx2k
and f 12m`1pxq “

1

2m` 1

8
ÿ

k“1

p´1qkp2kq

p2k ` 2m` 1qx2k`1

for |x| ą 1. It then follows from (2.4.7) that

ˇ

ˇF∆pxq
ˇ

ˇ !m
∆2

∆2 ` x2
and

ˇ

ˇF 1∆pxq
ˇ

ˇ !m
∆2

|x|p∆2 ` x2q
. (2.4.12)

Observe that for any complex number z we have

ˇ

ˇ

ˇ

ˇ

sinπz

πz

ˇ

ˇ

ˇ

ˇ

2

!
e2π|Im z|

1` |z|2
. (2.4.13)

Expressions (2.4.8) and (2.4.9) can be rewritten as

G´∆pzq “
8
ÿ

n“´8

ˆ

sinπpz ´ n` 1
2q

πpz ´ n` 1
2q

˙2
!

F∆

`

n´ 1
2

˘

` pz ´ n` 1
2

˘

F
1

∆

`

n´ 1
2

˘

)

(2.4.14)

and

G`∆pzq “

ˆ

sinπz

πz

˙2

F∆p0q `
ÿ

n‰0

ˆ

sinπpz ´ nq

πpz ´ nq

˙2
!

F∆pnq ` pz ´ nqF
1

∆pnq
)

. (2.4.15)

It follows from (2.4.12), (2.4.13), (2.4.14) and (2.4.15) that

ˇ

ˇG˘∆pzq
ˇ

ˇ !m
∆2

1` |z|
e2π|Im z|
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and from (2.4.10) this implies (2.4.3).

To bound G˘∆ on the real line, we explore the fact that F∆ is an even function (and hence

F 1∆ is odd) to group the terms conveniently. For the majorant we group the terms n and

´n in (2.4.15) to get

G`∆pxq “

ˆ

sinπx

πx

˙2

F∆p0q

`

8
ÿ

n“1

ˆ

sin2 πpx´ nq

π2px2 ´ n2q2

˙

!

p2x2 ` 2n2qF∆pnq ` px
2 ´ n2q 2nF

1

∆pnq
)

,

(2.4.16)

and it follows from (2.4.12) and (2.4.13) that

ˇ

ˇG`∆pxq
ˇ

ˇ !m
∆2

∆2 ` x2
. (2.4.17)

It may be useful to split the sum in (2.4.16) into the ranges tn ď |x|{2u, t|x|{2 ă n ď 2|x|u

and t2|x| ă nu to verify this last claim. The bound

ˇ

ˇG´∆pxq
ˇ

ˇ !m
∆2

∆2 ` x2
. (2.4.18)

follows in an analogous way, grouping the terms n and 1´ n (for n ě 1) in (2.4.14). From

(2.4.10), (2.4.17) and (2.4.18) we arrive at (2.4.2). .

Part (ii) From the inequalities (2.4.2) and (2.4.3), it follows that the functions g˘∆ have

exponential type 2π∆ and are integrable on R. By the Paley-Wiener theorem, the Fourier

transforms pg˘∆ are compactly supported on the interval r´∆,∆s. Moreover, using (2.4.2)

we obtain

ˇ

ˇ

pg˘∆pξq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

´8

g˘∆pxqe
´2πixξ dx

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż 8

´8

ˇ

ˇg˘∆pxq
ˇ

ˇ dx ď K2m`1

ż 8

´8

1

1` x2
dx !m 1.

.

Part (iii) From (2.4.7), (2.4.10) and the identities in [25, Section 11, Corollary 17 and

Example 3] we obtain

ż 8

´8

 

f2m`1pxq ´ g
´
2m`1,∆pxq

(

dx

“
1

∆

ż 8

´8

 

F∆pxq ´G
´
∆pxq

(

dx

“
1

∆

ż 8

0

#

ÿ

n‰0

p´1qn`1λ´1{2e´πλ
´1n2

+

dν∆pλq

“
1

∆

ż 8

0

ż 3{2

1{2

#

ÿ

n‰0

p´1qn`1λ´1{2e´πλ
´1n2

+

`

σ ´ 1
2

˘2m

˜

e´πλpσ´1{2q2∆2
´ e´πλ∆2

2λ

¸

dσ dλ
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“
1

∆

ż 3{2

1{2

`

σ ´ 1
2

˘2m
ż 8

0

#

ÿ

n‰0

p´1qn`1λ´1{2e´πλ
´1n2

+˜

e´πλpσ´1{2q2∆2
´ e´πλ∆2

2λ

¸

dλ dσ

“
1

∆

ż 3{2

1{2

`

σ ´ 1
2

˘2m
log

˜

1` e´2πpσ´1{2q∆

1` e´2π∆

¸

dσ,

where the interchange of integrals is justified since the integrand is nonnegative. In a similar

way, we have

ż 8

´8

 

g`2m`1,∆pxq ´ f2m`1pxq
(

dx

“
1

∆

ż 8

´8

 

G`∆pxq ´ F∆pxq
(

dx

“
1

∆

ż 8

0

#

ÿ

n‰0

λ´1{2e´πλ
´1n2

+

dν∆pλq

“
1

∆

ż 8

0

ż 3{2

1{2

#

ÿ

n‰0

λ´1{2e´πλ
´1n2

+

`

σ ´ 1
2

˘2m

˜

e´πλpσ´1{2q2∆2
´ e´πλ∆2

2λ

¸

dσ dλ

“
1

∆

ż 3{2

1{2

`

σ ´ 1
2

˘2m
ż 8

0

#

ÿ

n‰0

λ´1{2e´πλ
´1n2

+˜

e´πλpσ´1{2q2∆2
´ e´πλ∆2

2λ

¸

dλ dσ

“ ´
1

∆

ż 3{2

1{2

`

σ ´ 1
2

˘2m
log

˜

1´ e´2πpσ´1{2q∆

1´ e´2π∆

¸

dσ.

This concludes the proof of Lemma 2.8.

2.5 Proof of Theorem 2.3 in the case of n odd

Let n “ 2m ` 1. To simplify notation we disregard one of the subscripts and write

g˘∆pzq :“ g˘2m`1,∆pzq. For a fixed t ą 0, we consider the functions h˘∆pzq :“ g˘∆pt´ zq. Then
ph˘∆pξq “ pg˘∆p´ξqe

´2πiξt and the condition |h˘∆psq| ! p1 ` |s|q´2 when |Re s| Ñ 8 in the

strip |Im s| ď 1 follows from (2.4.2), (2.4.3) and an application of the Phragmén-Lindelöf

principle. We can then apply the Guinand-Weil explicit formula (Lemma 2.7) to get

ÿ

γ

g˘∆pt´ γq “

#

g˘∆

ˆ

t´
1

2i

˙

` g˘∆

ˆ

t`
1

2i

˙

+

´
1

2π
pg˘∆p0q log π

`
1

2π

ż 8

´8

g˘∆pt´ xqRe
Γ1

Γ

ˆ

1

4
`
ix

2

˙

dx (2.5.1)

´
1

2π

ÿ

ně2

Λpnq
?
n

"

pg˘∆

ˆ

´
log n

2π

˙

e´it logn ` pg˘∆

ˆ

log n

2π

˙

eit logn

*

.

We now analyze each term on the right-hand side of (2.5.1) separately.
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1. First term: From (2.4.3) we get

ˇ

ˇ

ˇ

ˇ

ˇ

g˘∆

ˆ

t´
1

2i

˙

` g˘∆

ˆ

t`
1

2i

˙

ˇ

ˇ

ˇ

ˇ

ˇ

!m ∆2 eπ∆

1`∆t
. (2.5.2)

2. Second term: From (2.4.4) we get

ˇ

ˇ

ˇ

ˇ

1

2π
pg˘∆p0q log π

ˇ

ˇ

ˇ

ˇ

!m 1. (2.5.3)

3. Third term: This is the term that requires most of our attention. Using (2.3.8) and [50,

2.733 - Formula 1] we start by observing that

ż 8

´8

f2m`1pxq dx “
1

2

ż 8

´8

ż 1

0
σ2m log

˜

1` x2

σ2 ` x2

¸

dσ dx

“
1

2

ż 1

0
σ2m

ż 8

´8

log

˜

1` x2

σ2 ` x2

¸

dx dσ

“
1

2

ż 1

0
σ2m

„

x log

ˆ

1` x2

σ2 ` x2

˙

` 2 arctanpxq ´ 2σ arctan
´x

σ

¯



ˇ

ˇ

ˇ

ˇ

ˇ

8

´8

dσ

“ π

ż 1

0
σ2mp1´ σq dσ

“
π

p2m` 1qp2m` 2q
. (2.5.4)

Let us assume without loss of generality that t ě 10. Using Stirling’s formula for Γ1{Γ (cf.

[36, Chapter 10]), together with (2.4.2), (2.4.5), (2.4.6) and (2.5.4), we get

1

2π

ż 8

´8

g˘∆pt´ xqRe
Γ1

Γ

ˆ

1

4
`
ix

2

˙

dx

“
1

2π

ż 8

´8

g˘∆pxq
`

log t`Oplogp2` |x|qqq dx

“
1

2π

ż 8

´8

!

f2m`1pxq ´
`

f2m`1pxq ´ g
˘
∆pxq

˘

)

`

log t`Oplogp2` |x|qqq dx

“
log t

2p2m` 1qp2m` 2q
´

log t

2π∆

ż 3{2

1{2

`

σ ´ 1
2

˘2m
log

˜

1¯ e´2πpσ´1{2q∆

1¯ e´2π∆

¸

dσ `Op1q

“
log t

2p2m` 1qp2m` 2q
´

log t

2π∆

ż 8

1{2

`

σ ´ 1
2

˘2m
log

´

1¯ e´2πpσ´1{2q∆
¯

dσ

`O
`

e´π∆ log t
˘

`Op1q.

(2.5.5)

We evaluate this last integral expanding logp1¯ xq into a power series:

ż 8

1{2

`

σ ´ 1
2

˘2m
log

´

1¯ e´2πpσ´1{2q∆
¯

dσ “

ż 8

0
σ2m log

´

1¯ e´2πσ∆
¯

dσ
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“

ż 8

0
σ2m

ÿ

kě0

#

¯
e´2πσ∆p2k`1q

2k ` 1
´
e´2πσ∆p2k`2q

2k ` 2

+

dσ

“
ÿ

kě0

ż 8

0
σ2m

#

¯
e´2πσ∆p2k`1q

2k ` 1
´
e´2πσ∆p2k`2q

2k ` 2

+

dσ

“
p2mq!

p2π∆q2m`1

ÿ

kě0

"

¯
1

p2k ` 1q2m`2
´

1

p2k ` 2q2m`2

*

.

The interchange between integral and sum above is guaranteed by the monotone convergence

theorem since all terms involved have the same sign. We have thus arrived at the following

two expressions:

1

2π

ż 8

´8

g`∆pt´ xqRe
Γ1

Γ

ˆ

1

4
`
ix

2

˙

dx

“
log t

2p2m` 1qp2m` 2q
`
p2mq! ζp2m` 2q

p2π∆q2m`2
log t`O

`

e´π∆ log t
˘

`Op1q

(2.5.6)

and

1

2π

ż 8

´8

g´∆pt´ xqRe
Γ1

Γ

ˆ

1

4
`
ix

2

˙

dx

“
log t

2p2m` 1qp2m` 2q
´
p2mq!

`

1´ 2´2m´1
˘

ζp2m` 2q

p2π∆q2m`2
log t

`O
`

e´π∆ log t
˘

`Op1q.

(2.5.7)

4. Fourth term: Recall that the Fourier transforms pg˘∆ are supported on the interval r´∆,∆s.

Using (2.4.4), summation by parts and the Prime Number Theorem we obtain

ˇ

ˇ

ˇ

ˇ

ˇ

1

2π

ÿ

ně2

Λpnq
?
n

"

pg˘∆

ˆ

´
log n

2π

˙

e´it logn ` pg˘∆

ˆ

log n

2π

˙

eit logn

*

ˇ

ˇ

ˇ

ˇ

ˇ

!m

ÿ

nďe2π∆

Λpnq
?
n

!m eπ∆.

(2.5.8)

Final analysis: Finally, recalling that n “ 2m` 1 we consider two cases:

Case 1: m even. In this case, by (2.3.3) we have

S2m`1ptq “
1

2πp2m` 2q!
log t´

1

πp2mq!

ÿ

γ

f2m`1pt´ γq ` Op1q.

Using (2.4.2) we arrive at

1

2πp2m` 2q!
log t´

1

πp2mq!

ÿ

γ

g`2m`1,∆pt´ γq ` Op1q

ď S2m`1ptq

ď
1

2πp2m` 2q!
log t´

1

πp2mq!

ÿ

γ

g´2m`1,∆pt´ γq ` Op1q.
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From (2.5.1), (2.5.2), (2.5.3), (2.5.6), (2.5.7) and (2.5.8) we find

´
ζp2m` 2q

πp2π∆q2m`2
log t`O

ˆ

∆2 eπ∆

1`∆t

˙

`O
`

e´π∆ log t
˘

`O
`

eπ∆ ` 1
˘

ď S2m`1ptq

ď

`

1´ 2´2m´1
˘

ζp2m` 2q

πp2π∆q2m`2
log t`O

ˆ

∆2 eπ∆

1`∆t

˙

`O
`

e´π∆ log t
˘

`O
`

eπ∆ ` 1
˘

.

(2.5.9)

Choosing

π∆ “ log log t´ p2m` 3q log log log t

in (2.5.9) we obtain

´

ˆ

ζp2m` 2q

π ¨ 22m`2
` op1q

˙

log t

plog log tq2m`2
ď S2m`1ptq

ď

˜

`

1´ 2´2m´1
˘

ζp2m` 2q

π ¨ 22m`2
` op1q

¸

log t

plog log tq2m`2
,

where the terms op1q above are Oplog log log t{ log log tq.

Case 2: m odd. Using (2.3.3) we get

S2m`1ptq “
´1

2πp2m` 2q!
log t`

1

πp2mq!

ÿ

γ

f2m`1pt´ γq `Op1q,

and we only need to interchange the roles of g`∆ and g´∆ in comparison to the previous case.

Similar calculations show that

´
`

C´2m`1 ` op1q
˘ log t

plog log tq2m`2
ď S2m`1ptq ď

`

C`2m`1 ` op1q
˘ log t

plog log tq2m`2
,

where the terms op1q above are Oplog log log t{ log log tq and

C´2m`1 “

`

1´ 2´2m´1
˘

ζp2m` 2q

π ¨ 22m`2
and C`2m`1 “

ζp2m` 2q

π ¨ 22m`2
.

This completes the proof of Theorem 2.3 for n odd.

2.6 Proof of Theorem 2.3 in the case of n even

In order to further simplify the notation let us write

`nptq :“
log t

plog log tqn
and rnptq :“

log t log log log t

plog log tqn
.
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Let n ě 2 be an even integer (the case n “ 0 was established in [16]). We have already

shown that

´C´n´1`nptq `Oprn`1ptqq ď Sn´1ptq ď C`n´1`nptq `Oprn`1ptqq (2.6.1)

and

´C´n`1`n`2ptq `Oprn`3ptqq ď Sn`1ptq ď C`n`1`n`2ptq `Oprn`3ptqq. (2.6.2)

Our goal now is to obtain a similar estimate for Snptq that interpolates between (2.6.1) and

(2.6.2). We view this as a pure analysis problem and our argument below explores the fact

that the function Snptq, for n ě 2, is continuously differentiable.

By the mean value theorem and (2.6.1) we obtain, for ´
?
t ď h ď

?
t,

Snptq ´ Snpt´ hq “ hSn´1pt
˚
hq

ď
`

χhą0 |h|C
`
n´1 ` χhă0 |h|C

´
n´1

˘

`npt
˚
hq ` |h|Oprn`1pt

˚
hqq

ď
`

χhą0 |h|C
`
n´1 ` χhă0 |h|C

´
n´1

˘

`nptq ` |h|Oprn`1ptqq ,

(2.6.3)

where t˚h is a suitable point in the segment connecting t´ h and t, and χhą0 and χhă0 are

the indicator functions of the sets th P R; h ą 0u and th P R; h ă 0u, respectively.

Let a and b be positive real numbers that shall be properly chosen later (in particular, we

will be able to choose them in a way that a` b “ 1, for instance). Let ν be a real parameter

such that 0 ă ν ď
?
t. We integrate (2.6.3) with respect to the variable h to get

Snptq ď
1

pa` bqν

ż bν

´aν
Snpt´ hq dh

`
1

pa` bqν

„
ż bν

´aν

`

χhą0 |h|C
`
n´1 ` χhă0 |h|C

´
n´1

˘

dh



`nptq

`
1

pa` bqν

„
ż bν

´aν
|h| dh



Oprn`1ptqq

“
1

pa` bqν

”

Sn`1pt` aνq ´ Sn`1pt´ bνq
ı

`

«

b2C`n´1 ` a
2C´n´1

2pa` bq

ff

ν `nptq

`Opν rn`1ptqq.

We now use (2.6.2) to get

Snptq ď
1

pa` bqν

”

C`n`1`n`2pt` aνq ` C
´
n`1`n`2pt´ bνq

`Oprn`3pt` aνqq `Oprn`3pt´ bνqq
ı

`

«

b2C`n´1 ` a
2C´n´1

2pa` bq

ff

ν `nptq `Opν rn`1ptqq
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“

«

C`n`1 ` C
´
n`1

pa` bq

ff

1

ν
`n`2ptq `

«

b2C`n´1 ` a
2C´n´1

2pa` bq

ff

ν `nptq

`O

ˆ

rn`3ptq

ν

˙

`Opν rn`1ptqq. (2.6.4)

Choosing ν “ α
log log t in (2.6.4), where α ą 0 is a constant to be determined, we find

Snptq ď

#«

C`n`1 ` C
´
n`1

pa` bq

ff

1

α
`

«

b2C`n´1 ` a
2C´n´1

2pa` bq

ff

α

+

`n`1ptq `Oprn`2ptqq.

We now choose α ą 0 to minimize the expression in brackets, which corresponds to the

choice

α “

«

C`n`1 ` C
´
n`1

pa` bq

ff1{2 «

b2C`n´1 ` a
2C´n´1

2pa` bq

ff´1{2

.

This leads to the bound

Snptq ď 2

«

`

C`n`1 ` C
´
n`1

˘`

b2C`n´1 ` a
2C´n´1

˘

2pa` bq2

ff1{2

`n`1ptq `Oprn`2ptqq. (2.6.5)

We now seek to minimize the right-hand side of (2.6.5) in the variables a and b. It is easy

to see that it only depends on the ratio a{b (and hence we can normalize to have a` b “ 1).

If we consider a “ bx we must minimize the function

Hpxq “ 2

«

`

C`n`1 ` C
´
n`1

˘`

C`n´1 ` x
2C´n´1

˘

2px` 1q2

ff1{2

.

Note that C˘n´1 ą 0 and C˘n`1 ą 0. Such a minimum is obtained when x “ C`n´1{C
´
n´1,

leading to the bound

Snptq ď

«

2
`

C`n`1 ` C
´
n`1

˘

C`n´1 C
´
n´1

C`n´1 ` C
´
n´1

ff1{2

`n`1ptq `Oprn`2ptqq.

The argument for the lower bound of Snptq is entirely symmetric.

This completes the proof of Theorem 2.3.

25



Chapter 3

The Riemann zeta-function and

bandlimited approximations II

This chapter is comprised of the paper [A2]. We provide explicit upper and lower bounds

for the argument of the Riemann zeta-function and its high moments in the critical strip

under the assumption of the Riemann hypothesis. This extends the bounds of the previous

chapter and sharpens the error terms in such estimates. The novelty here is the use of the

explicit formulas for the Fourier transforms of the bandlimited approximations that will

appear. We also show bounds for the real part of the logarithmic derivative of the Riemann

zeta-function in the critical strip.

Although the results in this chapter end up generalizing the results of Chapter 2, we

emphasize the fact that this chapter is considerably more technical. For this reason we

decided to keep the important case of the critical line in a separate chapter to clarify the

true insights and the rightful steps of our method.

3.1 Behavior in the critical strip: Snpσ, tq

In this section we extend the definition of the functions Snptq in (2.2.2) to the critical

strip. Let ζpsq denote the Riemann zeta-function and let 1
2 ď σ ď 1 be a real number. For

t ą 0 we define

Spσ, tq “ 1
π arg ζ

`

σ ` it
˘

,

where the argument is obtained by a continuous variation along straight line segments

joining the points 2, 2` it and σ` it, assuming that this path has no zeros of ζpsq, with the

convention that arg ζp2q “ 0. If this path has zeros of ζpsq (including the endpoint σ ` it)

we set

Spσ, tq “ 1
2 lim
εÑ0`

tSpσ, t` εq ` Spσ, t´ εqu .
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Similarly to (2.2.2) we define the sequence of high moments Snpσ, tq of Spσ, tq. Setting

S0pσ, tq “ Spσ, tq, for n ě 1 and t ą 0 we define the functions

Snpσ, tq “

ż t

0
Sn´1pσ, τq dτ ` δn,σ ,

where δn,σ is a specific constant depending on σ and n. For k P N, these constants are given

by

δ2k´1,σ “
p´1qk´1

π

ż 8

σ

ż 8

σ2k´2

. . .

ż 8

σ2

ż 8

σ1

log |ζpσ0q| dσ0 dσ1 . . . dσ2k´2

for n “ 2k ´ 1 and by

δ2k,σ “ p´1qk´1

ż 1

σ

ż 1

σ2k´1

. . .

ż 1

σ2

ż 1

σ1

dσ0 dσ1 . . . dσ2k´1 “
p´1qk´1p1´ σq2k

p2kq!

for n “ 2k. Note that in particular we have that Snp
1
2 , tq “ Snptq for t ą 0.

The main purpose of this chapter is to extend the bounds of Theorem 2.3 to the critical

strip in an explicit way. Assuming RH, for 1
2 ă σ ă 1, another function that will play an

important role in our study is the derivative1

S´1pσ, tq :“ S10pσ, tq “
1

π
Re

ζ 1

ζ
pσ ` itq.

3.1.1 Main result

For an integer n ě 0 we introduce the function

Hnpxq :“
8
ÿ

k“0

xk

pk ` 1qn
. (3.1.1)

The function xHnpxq “ Linpxq is known as polylogarithm of order n in the classical termi-

nology of special functions. Note that H0pxq “ 1{p1 ´ xq for |x| ă 1. Our main result is

stated below, in which we regard σ and t as free parameters.

Theorem 3.1. Assume the Riemann hypothesis and let n ě ´1. Let 1
2 ă σ ă 1 and c ą 0

be a given real number. Let t ą 0 be such that log log t ě 4. In the range

p1´ σq2 log log t ě c (3.1.2)

we have the uniform bounds:

1The derivative is calculated over the variable t, when σ is fixed.
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(i) For n “ ´1,

´C´´1,σptq plog tq2´2σ `Oc

˜

pσ ´ 1
2qplog tq2´2σ

p1´ σq2 log log t

¸

ď S´1,σptq “
1

π
Re

ζ 1

ζ
pσ ` itq

ď C`´1,σptq plog tq2´2σ `Oc

˜

plog tq2´2σ

pσ ´ 1
2q p1´ σq

2 plog log tq

¸

.

(3.1.3)

(ii) For n ě 0,

´C´n,σptq
plog tq2´2σ

plog log tqn`1
`On,c

ˆ

plog tq2´2σ

p1´ σq2 plog log tqn`2

˙

ď Snpσ, tq

ď C`n,σptq
plog tq2´2σ

plog log tqn`1
`On,c

ˆ

plog tq2´2σ

p1´ σq2 plog log tqn`2

˙

.

(3.1.4)

Above, C˘n,σptq are positive functions given by:

• For n ě ´1 odd,

C˘n,σptq “
1

2n`1π

ˆ

Hn`1

´

˘ p´1qpn`1q{2 plog tq1´2σ
¯

`
2σ ´ 1

σp1´ σq

˙

. (3.1.5)

• For n “ 0,

C˘0,σptq “
´

2
`

C`1,σptq ` C
´
1,σptq

˘

C´´1,σptq
¯1{2

. (3.1.6)

• For n ě 2 even,

C˘n,σptq “

˜

2
`

C`n`1,σptq ` C
´
n`1,σptq

˘

C`n´1,σptqC
´
n´1,σptq

C`n´1,σptq ` C
´
n´1,σptq

¸1{2

. (3.1.7)

Remark 3.2. In the course of the proof of Theorem 3.1 we obtain slightly stronger bounds

than the ones presented in (3.1.3) (see inequalities (3.5.12) and (3.5.15) below). In the

statement of Theorem 3.1 we presented the error terms in (3.1.3) and (3.1.4) in a convenient

way for our interpolation argument in Section 3.6.

Observe that letting σ Ñ 1
2

`
in our Theorem 3.1 (for n ě 0), we obtain a sharpened

version of Theorem 2.3 with improved error terms (a factor log log log t has been removed).

In particular, we record here the following consequence, a new proof of the best known

bound for Sptq under RH (in fact, with a sharpened error term when compared to [16] and

[17])2.

Corollary 3.3. Assume the Riemann hypothesis. For t ą 0 sufficiently large we have

|Sptq| ď
1

4

log t

log log t
`O

ˆ

log t

plog log tq2

˙

.

2For an explanation of why all these methods lead to the same constant 1{4 in the bound for Sptq, see
[17, Section 3].
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In order to find bounds for Spσ, tq which are stable under the limit σ Ñ 1
2

`
(and hence

extend Theorem 2.3), we modified a bit our interpolation method in §3.6.1 to use both

bounds for S1pσ, tq and only the lower bound for S´1pσ, tq. Observe that the lower bound

for S´1pσ, tq in Theorem 3.1 is stable under the limit σ Ñ 1
2

`
, whereas the upper bound

is not. This is somewhat expected since Sptq has jump discontinuities at the ordinates of

the non-trivial zeros of ζpsq. In our case such blow up comes from the fact that we use a

bandlimited majorant for the Poisson kernel and, as σ Ñ 1
2

`
, this Poisson kernel converges

to a delta function. This lack of stability may be related to the existence of small gaps

between ordinates of zeros of ζpsq. Something similar can be seen in the work of Ki [61] on

the distribution of the zeros of ζ 1psq.

If one is interested in bounds as t Ñ 8 for a f ixed σ with 1
2 ă σ ă 1, our Theorem

3.1 yields the following corollary (the bounds below can be made uniform in δ ą 0 if we

consider 1
2 ` δ ď σ ď 1´ δ.)

Corollary 3.4. Assume the Riemann hypothesis and let n ě ´1. Let 1
2 ă σ ă 1 be a fixed

number. Then

|Snpσ, tq| ď
ωn

2n`1π

ˆ

1`
2σ ´ 1

σp1´ σq
` op1q

˙

plog tq2´2σ

plog log tqn`1
,

as tÑ8, where ωn “ 1 if n is odd and ωn “
?

2 if n is even.

This plainly follows from (3.1.5) and (3.1.7) for n ‰ 0. For the case n “ 0 one would simply

perform the full interpolation method as described in §3.6.2 (using the upper and lower

bounds for both S1pσ, tq and S´1pσ, tq) to obtain the optimized constant as in (3.1.7).

Remark 3.5. The extra factor
?

2 in Corollary 3.4 when n is even comes from (3.1.7)

and it is due to our indirect interpolation argument. In principle, if one could directly solve

the associated extremal Fourier analysis problem in the case of n even, this could lead to

a better bound than (3.1.7). We note, however, that this is a highly nontrivial problem in

approximation theory. See the discussion in §3.1.3 below.

Finally, notice that we have purposely restricted our range to be strictly inside the

critical strip, away from the line σ “ 1. With our methods it is also possible (by means

of some additional technical work) to consider the case when the parameter σ is close to

1, obtaining bounds of the sort Snpσ, tq “ Onp1q, for n ě 1 (with explicit constants). We

do not pursue such matters here, feeling that classical methods in the literature are more

suitable to treat this range. In fact, bounds for Snp1, tq, for n ě 1, are easily obtainable

directly from (3.2.1) and the use of Fubini’s theorem with the series representation in the

region tz P C; Re z ą 1u. These bounds would be equal to our bounds in the cases of n odd,

and better in the case of n even, since we use an indirect approach, via interpolation, for

these cases. In the particular case of n “ 0, the known bound |Sp1, tq| ď 1
π log log log t`Op1q

(see [74, Corollary 13.16]) is not easily obtainable by our particular interpolation argument.
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3.1.2 A result for log |ζp1
2
` itq|

Using the lower bound for the function S´1pσ, tq in Theorem 3.1, we also deduce a new

proof of the best known bound, with improved error terms, for log |ζp1
2`itq| under RH (see

[29] and [14]).

Corollary 3.6. Assume the Riemann hypothesis. For t ą 0 sufficiently large we have

log
ˇ

ˇζp1
2`itq

ˇ

ˇ ď
log 2

2

log t

log log t
`O

ˆ

log t

plog log tq2

˙

.

Proof. Assuming RH, it follows from [74, Corollary 13.16] that

log |ζpσ ` itq| ď log
1

1´ σ
`O

ˆ

plog tq2´2σ

p1´ σq log log t

˙

uniformly for 1{2` 1{ log log t ď σ ď 1´ 1{ log log t and t ě 3. Therefore, letting δ “ δptq “
1
2 `

log log log t
log log t , we have

log |ζp1
2 ` itq| “ ´

ż δ

1{2
Re

ζ 1

ζ
pσ ` itq dσ ` log |ζpδ ` itq|

“ ´

ż δ

1{2
Re

ζ 1

ζ
pσ ` itq dσ `O

ˆ

log t

plog log tq2

˙

.

Since the lower bound in (3.1.3) implies that

´Re
ζ 1

ζ
pσ ` itq ď

plog tq2´2σ

1` plog tq1´2σ
`O

`

pσ´ 1
2qplog tq2´2σ

˘

uniformly for 1{2 ă σ ď δ, we see that

log |ζp1
2 ` itq| ď

ż δ

1{2

"

plog tq2´2σ

1` plog tq1´2σ
`O

`

pσ´ 1
2qplog tq2´2σ

˘

*

dσ `O

ˆ

log t

plog log tq2

˙

.

The corollary now follows from the estimates

ż δ

1{2

plog tq2´2σ

1` plog tq1´2σ
dσ ď

ż 1

1{2

plog tq2´2σ

1` plog tq1´2σ
dσ “

log 2

2

log t

log log t
´

log t logp1` 1{ log tq

2 log log t

and
ż δ

1{2
pσ´ 1

2qplog tq2´2σ dσ !
log t

plog log tq2
.

3.1.3 Strategy outline

The proof of these results follows the strategy of the previous chapter. It is worth

mentioning that here we face severe additional technical challenges in order to fully develop
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this circle of ideas to reach our desired conclusion.

The strategy is divided into the following four main steps:

Step 1: Representation lemma.

The first step is to identify the functions of a real variable that are naturally connected

with the objects to be bounded, in our case the functions Snpσ, tq. For each n ě ´1 and
1
2 ď σ ď 1 we define the function fn,σ : RÑ R in the following manner.

• If n “ 2m, for m P Zě0, we define

f2m,σpxq “

ż 3{2

σ
pα´ σq2m

˜

x

pα´ 1
2q

2 ` x2
´

x

1` x2

¸

dα. (3.1.8)

• If n “ 2m` 1, for m P Zě0, we define

f2m`1,σpxq “
1

2

ż 3{2

σ
pα´ σq2m log

˜

1` x2

pα´ 1
2q

2 ` x2

¸

dα. (3.1.9)

• If n “ ´1, we define

f´1,σpxq “
pσ ´ 1

2q

pσ ´ 1
2q

2 ` x2
. (3.1.10)

We prove a representation lemma (Lemma 3.8) where we write Snpσ, tq, for each n ě ´1, as

a sum of a translate of the function fn,σ over the non-trivial zeros of ζpsq plus some known

terms and a small error.

Step 2: Extremal functions.

As mentioned in the previous chapter, the tool to evaluate sums over the non-trivial

zeros of ζpsq is the Guinand-Weil explicit formula. However, the functions fn,σ defined

above do not possess the required smoothness to allow a direct evaluation. In fact, for

σ “ 1
2 and n ě 1, we have that fn, 1

2
is of class Cn´1pRq but not higher (the n-th derivative

is discontinuous at the origin). Note also that f0, 1
2

is discontinuous at the origin and f´1, 1
2

is identically zero. For 1
2 ă σ, the functions fn,σ are of class C8pRq but do not have an

analytic extension to the strip tz P C; ´1
2 ´ ε ă Im z ă 1

2 ` εu. In fact, the functions fn,σ

are analytic in the strip tz P C; ´pσ ´ 1
2q ă Im z ă pσ ´ 1

2qu but the n-th derivative of

fn,σ cannot be extended continuously to the points ˘pσ ´ 1
2qi, for n ě 0 (for n “ ´1 the

function f´1,σ has a pole at ˘pσ ´ 1
2qi).

The idea is then to replace the functions fn,σ by suitable bandlimited approximations

(real-valued majorants and minorants with compactly supported Fourier transforms) chosen

in such a way to minimize the L1pRq´distance. In our case, the situation is markedly

different depending upon whether n is even or odd. When n ě ´1 is odd, the function

fn,σ is even, and the robust Gaussian subordination framework of Carneiro, Littmann and
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Vaaler [25] provides the required extremal functions. When n is even, the function fn,σ is

odd and continuous (except in the case n “ 0 and σ “ 1
2 , which was considered in [16]). In

this general situation, the solution of the Beurling-Selberg extremal problem is unknown.

Therefore, we adopt a different approach based on an interpolation argument.

Step 3: Guinand-Weil explicit formula and asymptotic analysis.

In the case of n odd, n ě ´1, we bound Snpσ, tq by applying the Guinand-Weil explicit

formula to the Beurling-Selberg majorants and optimizing the size of the support of the

Fourier transform. We do a careful asymptotic analysis of all the terms that appear in the

explicit formula. In particular, we highlight that one of the main technical difficulties of

this work, when compared to [16, 18], is in the analysis of the sum over primes powers. This

term is easily handled in the works [16, 18] when σ “ 1
2 but, in the case σ ą 1

2 that we treat

here, we must perform a much deeper analysis, using the explicit knowledge of the Fourier

transform of the majorant function. This refined analysis allows to improve the error term

in Theorem 2.3. We collect in the Appendix some of the calculus facts and some of the

number theory facts that are needed for this analysis.

Step 4: Interpolation tools.

Having obtained the desired bounds for all odd n’s, with n ě ´1, we proceed (as in the

previous chapter) with an interpolation argument to obtain the estimate for the even n’s in

between, exploring the smoothness of Snpσ, tq via the mean value theorem. In the particular

case n “ 0, we modified a bit our interpolation method to use both bounds for S1pσ, tq and

only the lower bound for S´1pσ, tq.

3.2 Representation lemma II

In this section we collect some useful auxiliary results. Lemmas 3.7 and 3.8 below have

appeared in Lemmas 2.4 and 2.5 in the case σ “ 1
2 . The proofs for general 1

2 ď σ ď 1 are

essentially analogous. We include here brief versions of these proofs, both for completeness

and for the convenience of the reader.

Lemma 3.7. Assume the Riemann hypothesis.

(i) For n ě 0, 1
2 ď σ ď 1 and t ą 0 pand t not coinciding with the ordinate of a zero of

ζpsq when n “ 0 and σ “ 1
2q, we have

Snpσ, tq “ ´
1

π
Im

"

in

n!

ż 8

σ
pα´ σqn

ζ 1

ζ
pα` itq dα

*

. (3.2.1)

(ii) For n “ ´1, 1
2 ă σ ď 1 and t ą 0, we have

S´1pσ, tq :“ S10pσ, tq “
1

π
Re

ζ 1

ζ
pσ ` itq. (3.2.2)
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Proof. For the case σ “ 1
2 this is stated in Lemma 2.4 and the proof for piq in the case

general 1
2 ď σ ď 1 follows the same outline. Part (ii) just follows from the definition of

S´1pσ, tq.

We are now in position to state the main result of this section, an expression that

connects Snpσ, tq with the functions fn,σ defined in (3.1.8), (3.1.9) and (3.1.10). This result

is an extension of Lemma 3.8 and the proof follows the same outline. In the proof of Theorem

3.1 we shall only use the case of n odd, but we state here the representation for n even as

well, as a result of independent interest.

Lemma 3.8 (Representation lemma). Assume the Riemann hypothesis. For each n ě ´1

and 1
2 ď σ ď 1 pexcept n “ ´1 and σ “ 1

2q, let fn,σ : RÑ R be defined as in (3.1.8), (3.1.9)

and (3.1.10). For t ě 2 pand t not coinciding with an ordinate of a zero of ζpsq in the case

n “ 0 and σ “ 1
2q the following formulas hold.

(i) If n “ 2m, for m P Zě0, then

S2mpσ, tq “
p´1qm

πp2mq!

ÿ

γ

f2m,σpt´ γq ` Omp1q. (3.2.3)

(ii) If n “ 2m` 1, for m P Zě0, then

S2m`1pσ, tq “
p´1qm

2πp2m` 2q!

`

3
2 ´ σ

˘2m`2
log t

´
p´1qm

πp2mq!

ÿ

γ

f2m`1,σpt´ γq `Omp1q.
(3.2.4)

(iii) If n “ ´1, then

S´1pσ, tq “ ´
1

2π
log

t

2π
`

1

π

ÿ

γ

f´1,σpt´ γq `O

ˆ

1

t

˙

. (3.2.5)

The above sums run over the ordinates of the non-trivial zeros ρ “ 1
2 ` iγ of ζpsq.

Proof. We first treat (ii). It follows from Lemma 3.7 and integration by parts that

S2m`1pσ, tq “ ´
1

π
Im

"

i2m`1

p2m` 1q!

ż 8

σ
pα´ σq2m`1 ζ 1

ζ
pα` itq dα

*

“
p´1qm`1

πp2m` 1q!
Re

"
ż 8

σ
pα´ σq2m`1 ζ 1

ζ
pα` itq dα

*

“
p´1qm

πp2mq!
Re

"
ż 8

σ
pα´ σq2m log ζpα` itq dα

*

“
p´1qm

πp2mq!

ż 3{2

σ
pα´ σq2m log |ζpα` itq| dα`Omp1q.

(3.2.6)
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Using the equation (2.3.6) established in the proof of Lemma 2.5 we have

log |ζpα` itq| “
`

3
4 ´

α
2

˘

log t´
1

2

ÿ

γ

log

˜

1` pt´ γq2
`

α´ 1
2q

2 ` pt´ γq2

¸

`Op1q, (3.2.7)

uniformly for 1{2 ď α ď 3{2 and t ě 2. Inserting (3.2.7) into (3.2.6) yields

S2m`1pσ, tq “
p´1qm

πp2mq!

˜

ż 3{2

σ
pα´ σq2m

`

3
4 ´

α
2

˘

dα

¸

log t

´
p´1qm

2πp2mq!

ż 3{2

σ

ÿ

γ

pα´ σq2m log

˜

1` pt´ γq2

pα´ 1
2q

2 ` pt´ γq2

¸

dα`Omp1q

“
p´1qm

2πp2m` 2q!

`

3
2 ´ σ

˘2m`2
log t

´
p´1qm

2πp2mq!

ÿ

γ

ż 3{2

σ
pα´ σq2m log

˜

1` pt´ γq2

pα´ 1
2q

2 ` pt´ γq2

¸

dα`Omp1q

“
p´1qm

2πp2m` 2q!

`

3
2 ´ σ

˘2m`2
log t´

p´1qm

πp2mq!

ÿ

γ

f2m`1,σpt´ γq `Omp1q,

where the interchange between summation and integration can be justified, for instance,

by the monotone convergence theorem, since all the terms involved are nonnegative. This

concludes the proof of (ii).

We now move to the proof of (iii). Let s “ σ` it and recall that we are assuming t ě 2.

From the partial fraction decomposition for ζ 1psq{ζpsq (cf. [36, Chapter 12]), we have

ζ 1

ζ
psq “

ÿ

ρ

ˆ

1

s´ ρ
`

1

ρ

˙

´
1

2

Γ1

Γ

ˆ

s

2
` 1

˙

`B `
1

2
log π ´

1

s´ 1
, (3.2.8)

with B “ ´
ř

ρ Re p1{ρq. Again using Stirling’s formula we obtain

S´1pσ, tq “
1

π
Re

ζ 1

ζ
pσ ` itq “ ´

1

2π
log

t

2π
`

1

π

ÿ

γ

f´1,σpt´ γq `O

ˆ

1

t

˙

.

This proves (iii).

Finally, the proof of (i) follows along the same lines, starting with (3.2.1), restricting

the range of integration to the interval pσ, 3
2q, and using the partial fraction decomposition

(3.2.8) after adding and subtracting a term ζ1

ζ p
3
2 ` itq to balance the equation. The details

of the proof are left to the interested reader.

As mentioned in the previous section, we propose to use the Guinand-Weil explicit

formula (Lemma 2.7) to understand the sum of over the non-trivial zeros of ζpsq that appear

in Lemma 3.8, but the functions fn,σ do not possess the required smoothness properties to

allow the application of the Guinand-Weil formula. The key idea to prove Theorem 3.1,

in the case of n odd, is to replace the functions fn,σ by appropriate extremal majorants
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and minorants of exponential type (thus with a compactly supported Fourier transform by

the Paley-Wiener theorem). These bandlimited approximations are described in the next

section.

3.3 Extremal bandlimited approximations II

As in the previous chapter, we will use the Gaussian subordination framework of Carneiro,

Littmann and Vaaler [25] to find our extremal functions. It turns out that our functions

fn,σ when n is odd, defined in (3.1.9) and (3.1.10), are included in this class, since that

these functions can be write in the form (2.4.1). Moreover, it is also crucial for our purposes

to have a detailed description of the Fourier transforms of our majorants and minorants in

order to analyze the contribution from the primes and prime powers in the explicit formula.

3.3.1 Approximations to the Poisson kernel

We start with the case of the Poisson kernel f´1,σ. In order to simplify the notation we

let β “ σ ´ 1
2 and define

hβpxq :“ f´1,σpxq “
β

β2 ` x2
. (3.3.1)

The solution of the extremal problem for the Poisson kernel below is of independent interest

and may have other applications in analysis and number theory.

Lemma 3.9 (Extremal functions for the Poisson kernel). Let β ą 0 be a real number and

let ∆ ą 0 be a real parameter. Let hβ : R Ñ R be defined as in (3.3.1). Then there is a

unique pair of real entire functions m´β,∆ : CÑ C and m`β,∆ : CÑ C satisfying the following

properties:

(i) The real entire functions m˘β,∆ have exponential type 2π∆.

(ii) The inequality

m´β,∆pxq ď hβpxq ď m`β,∆pxq

holds pointwise for all x P R.

(iii) Subject to conditions (i) and (ii), the value of the integral

ż 8

´8

 

m`β,∆pxq ´m
´
β,∆pxq

(

dx

is minimized.

The functions m˘β,∆ are even and verify the following additional properties:

(iv) The L1´distances of m˘β,∆ to hβ are explicitly given by

ż 8

´8

 

m`β,∆pxq ´ hβpxq
(

dx “
2πe´2πβ∆

1´ e´2πβ∆
(3.3.2)
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and
ż 8

´8

 

hβpxq ´m
´
β,∆pxq

(

dx “
2πe´2πβ∆

1` e´2πβ∆
. (3.3.3)

(v) The Fourier transforms of m˘β,∆, denoted by pm˘β,∆pξq, are even continuous functions

supported on the interval r´∆,∆s given by

pm˘β,∆pξq “ π

˜

e2πβp∆´|ξ|q ´ e´2πβp∆´|ξ|q

peπβ∆ ¯ e´πβ∆q
2

¸

. (3.3.4)

(vi) The functions m˘β,∆ are explicitly given by

m˘β,∆pzq “

ˆ

β

β2 ` z2

˙

˜

e2πβ∆ ` e´2πβ∆ ´ 2 cosp2π∆zq

peπβ∆ ¯ e´πβ∆q
2

¸

. (3.3.5)

In particular, the function m´β,∆ is nonnegative on R.

(vii) Assume that 0 ă β ď 1
2 and ∆ ě 1. For any real number x we have

0 ă m´β,∆pxq ď hβpxq ď m`β,∆pxq !
1

βp1` x2q
, (3.3.6)

and, for any complex number z “ x` iy, we have

ˇ

ˇm`β,∆pzq
ˇ

ˇ !
∆2e2π∆|y|

βp1`∆|z|q
(3.3.7)

and

ˇ

ˇm´β,∆pzq
ˇ

ˇ !
β∆2e2π∆|y|

1`∆|z|
. (3.3.8)

Proof. We start by observing that (see (2.4.1))

hβpxq “

ż 8

0
e´πλx

2
dνβpλq ,

where νβ is the finite nonnegative measure given by dνβpλq “ πβ e´πλβ
2

dλ. Let us define

the auxiliary function

Hβ,∆pxq “ hβ

´ x

∆

¯

“
β∆2

β2∆2 ` x2
“

ż 8

0
e´πλx

2
dνβ,∆pλq ,

where νβ,∆ is the finite nonnegative measure given by dνβ,∆pλq “ πβ∆2 e´πλβ
2∆2

dλ.

From [25, Section 11] we know that there is a unique extremal majorant M`
β,∆pzq of

exponential type 2π and a unique extremal minorant M´
β,∆pzq of exponential type 2π for
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the real-valued function Hβ,∆, and these are given by

M`
β,∆pzq “

ˆ

sinπz

π

˙2
#

8
ÿ

n“´8

Hβ,∆pnq

pz ´ nq2
`

ÿ

n‰0

H
1

β,∆pnq

pz ´ nq

+

(3.3.9)

and

M´
β,∆pzq “

ˆ

cosπz

π

˙2
#

8
ÿ

n“´8

Hβ,∆

`

n´ 1
2

˘

`

z ´ n` 1
2

˘2 `
H
1

β,∆

`

n´ 1
2

˘

`

z ´ n` 1
2

˘

+

. (3.3.10)

We now set

m`β,∆pzq :“M`
β,∆p∆zq and m´β,∆pzq :“M´

β,∆p∆zq,

and a simple change of variables shows that these will be the unique extremal functions of

exponential type 2π∆ for hβ, as described in (i), (ii) and (iii). From (3.3.9) and (3.3.10) it

is clear that M˘
β,∆, and hence m˘β,∆, are even functions. We now verify the items (iv) - (vii).

Part(iv) Since M˘
β,∆ are entire functions of exponential type 2π whose restrictions to R

belong to L1pRq, a classical result of Plancherel and Pólya [76] (see also [89, Eq. (3.1) and

(3.2)]) guarantees that M˘
β,∆ are bounded on the real line and hence belong to L2pRq as well.

Moreover, still by [76], their derivatives pM˘
β,∆q

1 are also entire functions of exponential type

2π whose restrictions to R belong to L1pRqXL2pRq. In particular, M˘
β,∆ are integrable and

of bounded variation on R, and thus the Poisson summation formula holds pointwise. This

can be used to calculate the values of the integrals of M˘
β,∆. Using the fact that xM˘

β,∆ are

supported in the interval r´1, 1s (which follows from the Paley-Wiener theorem) and the

fact that M`
β,∆ interpolates the values of Hβ,∆ at Z (resp. M´

β,∆ interpolates the values of

Hβ,∆ at Z` 1
2) we find

xM`
β,∆p0q “

8
ÿ

n“´8

M`
β,∆pnq “

8
ÿ

n“´8

Hβ,∆pnq “
8
ÿ

k“´8

pHβ,∆pkq

“

8
ÿ

k“´8

π∆e´2πβ∆|k| “ π∆

ˆ

1` e´2πβ∆

1´ e´2πβ∆

˙

and

xM´
β,∆p0q “

8
ÿ

n“´8

M´
β,∆pn`

1
2q “

8
ÿ

n“´8

Hβ,∆pn`
1
2q “

8
ÿ

k“´8

p´1qk pHβ,∆pkq

“

8
ÿ

k“´8

p´1qk π∆e´2πβ∆|k| “ π∆

ˆ

1´ e´2πβ∆

1` e´2πβ∆

˙

.

The relation pm˘β,∆p0q “
1
∆
xM˘
β,∆p0q and the fact that phβp0q “

ş8

´8
hβpxq dx “ π lead us

directly to (3.3.2) and (3.3.3). This establishes (iv).
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Part (v) We have already noted that the Fourier transforms xM˘
β,∆ are continuous

functions (since M˘
β,∆ P L1pRq) supported in the interval r´1, 1s. From a classical result

of Vaaler [89, Theorem 9] one has the explicit expression for the Fourier transform of the

majorant, in which we use the fact that M`
β,∆pnq “ Hβ,∆pnq and pM`

β,∆q
1pnq “ H 1β,∆pnq for

all n P Z,

xM`
β,∆pξq “

8
ÿ

n“´8

ˆ

p1´ |ξ|qM`
β,∆pnq `

1

2πi
sgnpξq pM`

β,∆q
1pnq

˙

e´2πinξ

“

8
ÿ

n“´8

ˆ

p1´ |ξ|qHβ,∆pnq `
1

2πi
sgnpξqH 1β,∆pnq

˙

e´2πinξ

(3.3.11)

for ξ P r´1, 1s. Using the Poisson summation formula we have

8
ÿ

n“´8

Hβ,∆pnq e
´2πinξ “

8
ÿ

k“´8

pHβ,∆pξ ` kq

“

8
ÿ

k“´8

π∆ e´2πβ∆|ξ`k|

“ π∆

˜

e´2πβ∆|ξ| ` e´2πβ∆p1´|ξ|q

1´ e´2πβ∆

¸

(3.3.12)

and

8
ÿ

n“´8

H 1β,∆pnq e
´2πinξ “

8
ÿ

k“´8

xH 1β,∆pξ ` kq

“

8
ÿ

k“´8

2πipξ ` kq pHβ,∆pξ ` kq (3.3.13)

“

8
ÿ

k“´8

2πipξ ` kqπ∆ e´2πβ∆|ξ`k|

“ 2π2i∆ sgnpξq

˜

|ξ|
`

e´2πβ∆|ξ| ` e´2πβ∆p1´|ξ|q
˘

1´ e´2πβ∆
´
e´2πβ∆

`

e2πβ∆|ξ| ´ e´2πβ∆|ξ|
˘

p1´ e´2πβ∆q
2

¸

.

Plugging (3.3.12) and (3.3.13) into (3.3.11) gives us

xM`
β,∆pξq “ π∆

˜

e2πβ∆p1´|ξ|q ´ e´2πβ∆p1´|ξ|q

peπβ∆ ´ e´πβ∆q
2

¸

,

and from the fact that

pm˘β,∆pξq “
1

∆
xM˘
β,∆

´ ξ

∆

¯

(3.3.14)

we arrive at (3.3.4) for the majorant.

For the minorant we proceed analogously. From [89, Theorem 9] one has the representation,

in which we use the fact that M´
β,∆pn`

1
2q “ Hβ,∆pn`

1
2q and pM´

β,∆q
1pn` 1

2q “ H 1β,∆pn`
1
2q
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for all n P Z,

xM´
β,∆pξq “

8
ÿ

n“´8

ˆ

p1´ |ξ|qM´
β,∆pn`

1
2q `

1

2πi
sgnpξq pM´

β,∆q
1pn` 1

2q

˙

e´2πipn` 1
2
qξ

“

8
ÿ

n“´8

ˆ

p1´ |ξ|qHβ,∆pn`
1
2q `

1

2πi
sgnpξqH 1β,∆pn`

1
2q

˙

e´2πipn` 1
2
qξ (3.3.15)

for ξ P r´1, 1s. Poisson summation now yields

8
ÿ

n“´8

Hβ,∆pn`
1
2q e

´2πipn` 1
2
qξ “

8
ÿ

k“´8

p´1qk pHβ,∆pξ ` kq

“ π∆

˜

e´2πβ∆|ξ| ´ e´2πβ∆p1´|ξ|q

1` e´2πβ∆

¸ (3.3.16)

and

8
ÿ

n“´8

H 1β,∆pn`
1
2q e

´2πipn` 1
2
qξ “

8
ÿ

k“´8

2πi pξ ` kq p´1qk pHβ,∆pξ ` kq (3.3.17)

“ 2π2i∆ sgnpξq

˜

|ξ|
`

e´2πβ∆|ξ| ´ e´2πβ∆p1´|ξ|q
˘

1` e´2πβ∆
`
e´2πβ∆

`

e2πβ∆|ξ| ´ e´2πβ∆|ξ|
˘

p1` e´2πβ∆q
2

¸

.

Plugging (3.3.16) and (3.3.17) into (3.3.15) gives us

xM´
β,∆pξq “ π∆

˜

e2πβ∆p1´|ξ|q ´ e´2πβ∆p1´|ξ|q

peπβ∆ ` e´πβ∆q
2

¸

,

and using (3.3.14) we arrive at (3.3.4) for the minorant. This completes the proof of (v).

Part (vi) The proof of (vi) is a direct computation using (v) and Fourier inversion

m˘β,∆pzq “

ż ∆

´∆
π

˜

e2πβp∆´|ξ|q ´ e´2πβp∆´|ξ|q

peπβ∆ ¯ e´πβ∆q
2

¸

e2πiξz dξ.

We omit the details of this calculation.

Part (vii) From (3.3.5) it follows directly that 0 ă m´β,∆pxq for all x P R. We may also

write

m`β,∆pxq “
β

β2 ` x2

˜

1`
4 sin2pπ∆xq

peπβ∆ ´ e´πβ∆q
2

¸

. (3.3.18)

We then note that in the range 0 ă β ď 1
2 and ∆ ě 1 the following estimates hold:

β

β2 ` x2
!

1

βp1` x2q
(3.3.19)
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and

ˆ

β

β2 ` x2

˙

sin2pπ∆xq

peπβ∆ ´ e´πβ∆q
2 “

ˆ

β

β2 ` x2

˙ˆ

sinpπ∆xq

∆x

˙2 ˆ∆x

β∆

˙2 ˆ β∆

eπβ∆ ´ e´πβ∆

˙2

!

ˆ

β

β2 ` x2

˙ˆ

1

1`∆2x2

˙ˆ

x

β

˙2

(3.3.20)

!
1

βp1` x2q
.

Using (3.3.19) and (3.3.20) in (3.3.18) yields the estimate

m`β,∆pxq !
1

βp1` x2q
.

The idea to analyze the growth in the complex plane is similar. We start by rewriting (3.3.5)

as

m˘β,∆pzq “
4

β

ˆ

sinπ∆pz ` iβq

∆pz ` iβq

˙ˆ

sinπ∆pz ´ iβq

∆pz ´ iβq

˙ˆ

β∆

eπβ∆ ¯ e´πβ∆

˙2

(3.3.21)

and then apply the following uniform bounds

ˇ

ˇ

ˇ

ˇ

sinw

w

ˇ

ˇ

ˇ

ˇ

!
e|Imw|

1` |w|
(3.3.22)

and
1

p1` |w ` iγ|q
¨

1

p1` |w ´ iγ|q
!

1

1` |w|
(3.3.23)

that are valid for any w P C and γ ą 0. Using (3.3.22) and (3.3.23) in (3.3.21) we derive

that

ˇ

ˇm˘β,∆pzq
ˇ

ˇ !
1

β

˜

eπ∆p|Im z|`βq

1`∆|z ` iβ|

¸˜

eπ∆p|Im z|`βq

1`∆|z ´ iβ|

¸

ˆ

β∆

eπβ∆ ¯ e´πβ∆

˙2

!
1

β

˜

e2π∆|Im z|

1`∆|z|

¸

ˆ

β∆ eπβ∆

eπβ∆ ¯ e´πβ∆

˙2

.

In the majorant case, we have

ˆ

β∆ eπβ∆

eπβ∆ ´ e´πβ∆

˙2

! 1` pβ∆q2 ! ∆2 ,

and this leads to (3.3.7). In the minorant case we have

ˆ

β∆ eπβ∆

eπβ∆ ` e´πβ∆

˙2

! pβ∆q2 ,

and this leads to (3.3.8). This concludes the proof of the lemma.
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3.3.2 Approximations to the functions f2m`1,σ

Our next task is to present the analogue of Lemma 3.9 (i.e. the solution of the Beurling-

Selberg extremal problem) for the family of even functions f2m`1,σ defined in (3.1.9). This

result is an extension of Lemma 2.8, where the case σ “ 1
2 was studied. We highlight the

explicit description of the Fourier transforms of the extremal bandlimited approximations.

This is a slightly technical but extremely important part of this chapter, since these Fourier

transforms will play an important role in the evaluation of the sum over prime powers in

the explicit formula.

Lemma 3.10 (Extremal functions for f2m`1,σ). Let m ě 0 be an integer and let 1
2 ď σ ď 1

and ∆ ě 1 be real parameters. Let f2m`1,σ be the real-valued function defined in (3.1.9),

namely

f2m`1,σpxq “
1

2

ż 3{2

σ
pα´ σq2m log

˜

1` x2

pα´ 1
2q

2 ` x2

¸

dα.

Then there is a unique pair of real entire functions g´2m`1,σ,∆ : CÑ C and g`2m`1,σ,∆ : CÑ C
satisfying the following properties:

(i) The real entire functions g˘2m`1,σ,∆ have exponential type 2π∆.

(ii) The inequality

g´2m`1,σ,∆pxq ď f2m`1,σpxq ď g`2m`1,σ,∆pxq (3.3.24)

holds pointwise for all x P R.

(iii) Subject to conditions (i) and (ii), the value of the integral

ż 8

´8

 

g`2m`1,σ,∆pxq ´ g
´
2m`1,σ,∆pxq

(

dx

is minimized.

The functions g˘2m`1,σ,∆ are even and verify the following additional properties:

(iv) For any real number x we have

ˇ

ˇg˘2m`1,σ,∆pxq
ˇ

ˇ !m
1

1` x2
, (3.3.25)

and, for any complex number z “ x` iy, we have

ˇ

ˇg˘2m`1,σ,∆pzq
ˇ

ˇ !m
∆2e2π∆|y|

p1`∆|z|q
, (3.3.26)

where the constants implied by the !m notation depend only on m.
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(v) The Fourier transforms of g˘2m`1,σ,∆, denoted by pg˘2m`1,σ,∆pξq, are continuous func-

tions supported on the interval r´∆,∆s and satisfy

ˇ

ˇ

pg˘2m`1,σ,∆pξq
ˇ

ˇ !m 1. (3.3.27)

(vi) The L1´distances of g˘2m`1,σ,∆ to f2m`1,σ are explicitly given by

ż 8

´8

 

g`2m`1,σ,∆pxq ´ f2m`1,σpxq
(

dx

“ ´
1

∆

ż 3{2

σ
pα´ σq2m log

˜

1´ e´2πpα´1{2q∆

1´ e´2π∆

¸

dα, (3.3.28)

and

ż 8

´8

 

f2m`1,σpxq ´ g
´
2m`1,σ,∆pxq

(

dx

“
1

∆

ż 3{2

σ
pα´ σq2m log

˜

1` e´2πpα´1{2q∆

1` e´2π∆

¸

dα. (3.3.29)

(vii) At ξ “ 0 we have

pg˘2m`1,σ,∆p0q “
π
`

3
2 ´ σ

˘2m`2

p2m` 1qp2m` 2q

´
1

∆

ż 3{2

σ
pα´ σq2m log

˜

1¯ e´2πpα´1{2q∆

1¯ e´2π∆

¸

dα. (3.3.30)

(viii) The Fourier transforms pg˘2m`1,σ,∆ are even functions and, for 0 ă ξ ă ∆, we have the

explicit expressions

pg˘2m`1,σ,∆pξq “

1

2

8
ÿ

k“´8

p˘1qk

«

k ` 1

|ξ ` k∆|

˜

p2mq! e´2π|ξ`k∆|pσ´1{2q

p2π|ξ ` k∆|q2m`1
(3.3.31)

´

2m`1
ÿ

j“0

γj e
´2π|ξ`k∆|

p2π|ξ ` k∆|qj
`

3
2 ´ σ

˘2m`1´j

¸ff

,

where γj “
p2mq!

p2m`1´jq! , for 0 ď j ď 2m` 1.

Proof. Fix m ě 0 and 1
2 ď σ ď 1. For ∆ ě 1 we consider the nonnegative Borel measure

ν∆ “ ν2m`1,σ,∆ on p0,8q given by

dν∆pλq :“

ż 3{2

σ
pα´ σq2m

˜

e´πλpα´1{2q2∆2
´ e´πλ∆2

2λ

¸

dα dλ ,
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and let F∆ “ F2m`1,σ,∆ be the function

F∆pxq :“

ż 8

0
e´πλx

2
dν∆pλq.

Recall that

1

2
log

˜

x2 `∆2

x2 ` pα´ 1
2q

2∆2

¸

“

ż 8

0
e´πλx

2

˜

e´πλpα´1{2q2∆2
´ e´πλ∆2

2λ

¸

dλ.

Multiplying both sides by pα´ σq2m and integrating from α “ σ to α “ 3
2 yields

1

2

ż 3{2

σ
pα´ σq2m log

˜

x2 `∆2

x2 ` pα´ 1
2q

2∆2

¸

dα

“

ż 3{2

σ

ż 8

0
pα´ σq2m e´πλx

2

˜

e´πλpα´1{2q2∆2
´ e´πλ∆2

2λ

¸

dλ dα

“

ż 8

0
e´πλx

2

ż 3{2

σ
pα´ σq2m

˜

e´πλpα´1{2q2∆2
´ e´πλ∆2

2λ

¸

dα dλ

“ F∆pxq,

(3.3.32)

where the interchange of the integrals is justified since the terms involved are all nonnegative.

It follows from (3.1.9) that

f2m`1,σpxq “ F∆p∆xq. (3.3.33)

In particular, this shows that the measure ν∆ is finite on p0,8q since

ż 8

0
dν∆pλq “ F∆p0q “ f2m`1,σp0q.

From the Gaussian subordination framework of [25, Section 11], there is a unique extremal

majorant G`∆pzq “ G`2m`1,σ,∆pzq and a unique extremal minorant G´∆pzq “ G´2m`1,σ,∆pzq of

exponential type 2π for F∆pxq, and these functions are given by

G`∆pzq “

ˆ

sinπz

π

˙2
#

8
ÿ

n“´8

F∆pnq

pz ´ nq2
`

ÿ

n‰0

F
1

∆pnq

pz ´ nq

+

(3.3.34)

and

G´∆pzq “

ˆ

cosπz

π

˙2
#

8
ÿ

n“´8

F∆

`

n´ 1
2

˘

`

z ´ n` 1
2

˘2 `
F
1

∆

`

n´ 1
2

˘

`

z ´ n` 1
2

˘

+

. (3.3.35)

Hence, the functions g`∆pzq “ g`2m`1,σ,∆pzq and g´∆pzq “ g´2m`1,σ,∆pzq defined by

g`∆pzq :“ G`∆p∆zq and g´∆pzq :“ G´∆p∆zq (3.3.36)
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are the unique extremal functions of exponential type 2π∆ for f2m`1,σ, as described in

(i), (ii) and (iii). From (3.3.34) and (3.3.35) it is clear that G˘∆, and hence g˘∆, are even

functions. We now verify the items (iv) - (viii).

Part (iv) For σ “ 1
2 , the function f2m`1, 1

2
“ f2m`1 (see (2.3.8)) was already used in

Lemma 2.8 in connection to bounds for S2m`1ptq in the critical line and is explicitly given

by

f2m`1, 1
2
pxq “

1

p2m` 1q

«

p´1qm`1x2m`1 arctan

ˆ

1

x

˙

`

m
ÿ

k“0

p´1qm´k

2k ` 1
x2m´2k

ff

.

Directly from the definition (3.1.9) we see that

0 ď f2m`1,σpxq ď f2m`1, 1
2
pxq and 0 ď

ˇ

ˇf 12m`1,σpxq
ˇ

ˇ ď
ˇ

ˇf 1
2m`1, 1

2

pxq
ˇ

ˇ (3.3.37)

for all x P R and 1
2 ď σ ď 1. Therefore, from (2.4.11) and (3.3.37) it follows that

ˇ

ˇf2m`1,σpxq
ˇ

ˇ !m
1

1` x2
and

ˇ

ˇf 12m`1,σpxq
ˇ

ˇ !m
1

|x|p1` x2q

(note that the implicit constants do not depend on σ). It then follows from (3.3.33) that

(recall the shorthand notation F∆ “ F2m`1,σ,∆)

ˇ

ˇF∆pxq
ˇ

ˇ !m
∆2

∆2 ` x2
and

ˇ

ˇF 1∆pxq
ˇ

ˇ !m
∆2

|x|p∆2 ` x2q
. (3.3.38)

Expressions (3.3.34) and (3.3.35) can be rewritten as

G`∆pzq “

ˆ

sinπz

πz

˙2

F∆p0q `
ÿ

n‰0

ˆ

sinπpz ´ nq

πpz ´ nq

˙2
!

F∆pnq ` pz ´ nqF
1

∆pnq
)

(3.3.39)

and

G´∆pzq “
8
ÿ

n“´8

ˆ

sinπpz ´ n` 1
2q

πpz ´ n` 1
2q

˙2
!

F∆

`

n´ 1
2

˘

` pz ´ n` 1
2

˘

F
1

∆

`

n´ 1
2

˘

)

. (3.3.40)

We now use (3.3.38), (3.3.39), (3.3.40) and the bound (2.4.13) to get

ˇ

ˇG˘∆pzq
ˇ

ˇ !m
∆2e2π|Im z|

1` |z|
.

One can break the sums in (3.3.39) and (3.3.40) into the ranges tn ď |z|{2u, t|z|{2 ă n ď

2|z|u and t2|z| ă nu to verify this last claim. From (3.3.36) we arrive at (3.3.26).

To bound the functions G˘∆ on the real line, we explore the fact that F∆ is an even

function (and hence F 1∆ is odd) to group the terms conveniently. For the majorant we group
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the terms n and ´n in (3.3.39) to get

G`∆pxq “

ˆ

sinπx

πx

˙2

F∆p0q

`

8
ÿ

n“1

ˆ

sin2 πpx´ nq

π2px2 ´ n2q2

˙

!

p2x2 ` 2n2qF∆pnq ` px
2 ´ n2q 2nF

1

∆pnq
)

,

(3.3.41)

and it follows from (3.3.38) and (2.4.13) that

ˇ

ˇG`∆pxq
ˇ

ˇ !m
∆2

∆2 ` x2
. (3.3.42)

Again, it may be useful to split the sum in (3.3.41) into the ranges tn ď |x|{2u, t|x|{2 ă

n ď 2|x|u and t2|x| ă nu to verify this last claim. The bound

ˇ

ˇG´∆pxq
ˇ

ˇ !m
∆2

∆2 ` x2
(3.3.43)

follows in an analogous way, grouping the terms n and 1´ n (for n ě 1) in (3.3.40). From

(3.3.36), (3.3.42) and (3.3.43) we arrive at (3.3.25).

Part (v) Since g˘2m`1,σ,∆ are entire functions of exponential type 2π∆ whose restrictions

to R are integrable, it follows from the Paley-Wiener theorem that their Fourier transforms

are continuous functions supported on the interval r´∆,∆s. Moreover, from the uniform

bounds (3.3.25) we see that

ˇ

ˇ

pg˘2m`1,σ,∆pξq
ˇ

ˇ ď

ż 8

´8

ˇ

ˇg˘2m`1,σ,∆pxq
ˇ

ˇ dx !m 1.

.

Parts (vi) and (vii) From (3.3.42), (3.3.43), and the fact that the Fourier transforms

pG˘∆ are supported on r´1, 1s, we may apply the Poisson summation formula pointwise to

G˘∆. Recalling that G`∆ interpolates the values of F∆ at Z, we use (3.3.32) to derive that

pG`∆p0q “
8
ÿ

n“´8

G`∆pnq “
8
ÿ

n“´8

F∆pnq

“
1

2

ż 3{2

σ
pα´ σq2m

8
ÿ

n“´8

log

˜

n2 `∆2

n2 ` pα´ 1
2q

2∆2

¸

dα

“
1

2

ż 3{2

σ
pα´ σq2m

˜

2π∆p3
2 ´ αq ´ 2 log

˜

1´ e´2πpα´1{2q∆

1´ e´2π∆

¸¸

dα

“
π∆

`

3
2 ´ σ

˘2m`2

p2m` 1qp2m` 2q
´

ż 3{2

σ
pα´ σq2m log

˜

1´ e´2πpα´1{2q∆

1´ e´2π∆

¸

dα.

(3.3.44)
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Above we have used the fact that, for b ě a ą 0 (see, for instance, [14, §4.2.1])

8
ÿ

n“´8

log

ˆ

n2 ` b2

n2 ` a2

˙

“ 2πpb´ aq ´ 2 log

ˆ

1´ e´2πa

1´ e´2πb

˙

.

One can prove this directly regarding both sides as a function of the variable b, observing

that they agree when b “ a, and showing that they have the same derivative.

We proceed analogously for the minorant

pG´∆p0q “
8
ÿ

n“´8

G´∆pnq “
8
ÿ

n“´8

F∆pn`
1
2q

“
1

2

ż 3{2

σ
pα´ σq2m

8
ÿ

n“´8

log

˜

pn` 1
2q

2 `∆2

pn` 1
2q

2 ` pα´ 1
2q

2∆2

¸

dα

“
1

2

ż 3{2

σ
pα´ σq2m

˜

2π∆p3
2 ´ αq ´ 2 log

˜

1` e´2πpα´1{2q∆

1` e´2π∆

¸¸

dα (3.3.45)

“
π∆

`

3
2 ´ σ

˘2m`2

p2m` 1qp2m` 2q
´

ż 3{2

σ
pα´ σq2m log

˜

1` e´2πpα´1{2q∆

1` e´2π∆

¸

dα,

now using the fact that, for b ě a ą 0 (see [14, §4.1.2])

8
ÿ

n“´8

log

˜

pn` 1
2q

2 ` b2

pn` 1
2q

2 ` a2

¸

“ 2πpb´ aq ´ 2 log

ˆ

1` e´2πa

1` e´2πb

˙

.

From (3.3.44), (3.3.45) and the dilation relation

pg˘∆pξq “
1

∆
pG˘∆

ˆ

ξ

∆

˙

, (3.3.46)

we arrive at (3.3.30). Besides, using the fact that (see, for instance, [50, §2.733 Eq.1])

ż 8

´8

f2m`1,σpxq dx “
π
`

3
2 ´ σ

˘2m`2

p2m` 1qp2m` 2q
,

we arrive at (3.3.28) and (3.3.29) from (3.3.30).

Part (viii) From relation (3.3.46) it suffices to find the explicit form of pG˘∆pξq for

´1 ď ξ ď 1. Since pG˘∆pξq are even functions, we only need to consider the case 0 ă ξ ď 1

(recall that the values at ξ “ 0 were computed in the proof of (vii)).

We consider first the majorant. Recall that G`∆pkq “ F∆pkq for all k P Z and pG`∆q
1pkq “

F 1∆pkq for all k P Zzt0u. Note also that pG`∆q
1p0q “ 0, since G`∆ is an even function, and

that F 1∆p0q “ 0 except in the case α “ 1
2 and m “ 0, for which F∆ is not differentiable at
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x “ 0. Our starting point is a result of Vaaler [89, Theorem 9] that gives us

pG`∆pξq “ p1´ |ξ|q
8
ÿ

k“´8

G`∆pkq e
´2πikξ `

1

2πi
sgnpξq

8
ÿ

k“´8

pG`∆q
1pkq e´2πikξ

“ p1´ |ξ|q
8
ÿ

k“´8

F∆pkq e
´2πikξ `

1

2πi
sgnpξq

ÿ

k‰0

F 1∆pkq e
´2πikξ.

(3.3.47)

Using (3.3.32), the first sum in (3.3.47) is given by

8
ÿ

k“´8

F∆pkq e
´2πikξ

“

8
ÿ

k“´8

˜

1

2

ż 3{2

σ
pα´ σq2m log

˜

k2 `∆2

k2 ` pα´ 1
2q

2∆2

¸

dα

¸

e´2πikξ (3.3.48)

“
1

2

ż 3{2

σ
pα´ σq2m

˜

8
ÿ

k“´8

log

˜

k2 `∆2

k2 ` pα´ 1
2q

2∆2

¸

e´2πikξ

¸

dα,

where the use of Fubini’s theorem is justified by the absolute convergence of the sum on the

left-hand side (which follows by (3.3.38)). The inner sum in (3.3.48) can be evaluated via

Poisson summation applied to the Fourier transform pair

hpxq “ log

˜

x2 ` b2

x2 ` a2

¸

and phpξq “
e´2π|ξ|a ´ e´2π|ξ|b

|ξ|
(3.3.49)

for real numbers b ě a ą 0 (see [14, §4.1.2]). We then arrive at

8
ÿ

k“´8

F∆pkq e
´2πikξ

“
1

2

ż 3{2

σ
pα´ σq2m

˜

8
ÿ

k“´8

e´2π|ξ`k|pα´1{2q∆ ´ e´2π|ξ`k|∆

|ξ ` k|

¸

dα

“
1

2

8
ÿ

k“´8

ż 3{2

σ
pα´ σq2m

˜

e´2π|ξ`k|pα´1{2q∆ ´ e´2π|ξ`k|∆

|ξ ` k|

¸

dα.

(3.3.50)

We shall use the following indefinite integral [50, §2.321] in our computations

ż

xn e´ax dx “ ´e´ax

˜

n
ÿ

`“0

`!
`

n
`

˘

a``1
xn´`

¸

. (3.3.51)

Using (3.3.51) in (3.3.50) we get

8
ÿ

k“´8

F∆pkq e
´2πikξ
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“
1

2

8
ÿ

k“´8

e´2π|ξ`k|pσ´1{2q∆

|ξ ` k|

ˆ

p2mq!

p2π|ξ ` k|∆q2m`1

´ e´2π|ξ`k|p3{2´σq∆
2m
ÿ

`“0

`!
`

2m
`

˘

p2π|ξ ` k|∆q``1

`

3
2 ´ σ

˘2m´`
˙

´
1

2

8
ÿ

k“´8

e´2π|ξ`k|∆

p2m` 1q|ξ ` k|

`

3
2 ´ σ

˘2m`1
(3.3.52)

“
1

2

8
ÿ

k“´8

1

|ξ ` k|

„

p2mq! e´2π|ξ`k|pσ´1{2q∆

p2π|ξ ` k|∆q2m`1
´

2m`1
ÿ

j“0

γj e
´2π|ξ`k|∆

p2π|ξ ` k|∆qj
`

3
2 ´ σ

˘2m`1´j


,

with γj “
p2mq!

p2m`1´jq! , for 0 ď j ď 2m` 1.

We now evaluate the second sum in (3.3.47). Using (3.3.32) we have

ÿ

k‰0

F 1∆pkq e
´2πikξ

“
ÿ

k‰0

˜

ż 3{2

σ
pα´ σq2m

˜

k

k2 `∆2
´

k

k2 ` pα´ 1
2q

2∆2

¸

dα

¸

e´2πikξ (3.3.53)

“

ż 3{2

σ
pα´ σq2m

˜

8
ÿ

k“´8

˜

k

k2 `∆2
´

k

k2 ` pα´ 1
2q

2∆2

¸

e´2πikξ

¸

dα,

where the use of Fubini’s theorem is again justified by the absolute convergence of the sum

on the left-hand side, which again follows by (3.3.38). The inner sum in (3.3.53) can be

evaluated via Poisson summation applied to the Fourier transform pair

hpxq “
x

x2 ` a2
´

x

x2 ` b2
and phpξq “ ´πi sgnpξq

´

e´2π|ξ|a ´ e´2π|ξ|b
¯

(3.3.54)

for real numbers b ě a ą 0 (see [14, §4.1.2]). We then arrive at the expression

ÿ

k‰0

F 1∆pkq e
´2πikξ

“ πi

ż 3{2

σ
pα´ σq2m

˜

8
ÿ

k“´8

sgnpξ ` kq
´

e´2πpα´1{2q|ξ`k|∆ ´ e´2π|ξ`k|∆
¯

¸

dα

“ πi
8
ÿ

k“´8

sgnpξ ` kq

ż 3{2

σ
pα´ σq2m

´

e´2πpα´1{2q|ξ`k|∆ ´ e´2π|ξ`k|∆
¯

dα.

The latter use of Fubini’s theorem can be justified by the absolute convergence of the

double integral (one can explicitly sum the exponentials in geometric progressions). In the

case σ “ 1
2 and m “ 0 one has to be a bit more careful and group the terms k and ´k ´ 1,

for k ě 0, to have convergence. Using (3.3.51) we get

ÿ

k‰0

F 1∆pkq e
´2πikξ
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“ πi
8
ÿ

k“´8

sgnpξ ` kq

˜

p2mq! e´2π|ξ`k|pσ´1{2q∆

p2π|ξ ` k|∆q2m`1

´ e´2π|ξ`k|∆
2m
ÿ

`“0

`!
`

2m
`

˘

p2π|ξ ` k|∆q``1

`

3
2 ´ σ

˘2m´`

¸

(3.3.55)

´ πi
8
ÿ

k“´8

sgnpξ ` kq
e´2π|ξ`k|∆

p2m` 1q

`

3
2 ´ σ

˘2m`1

“ πi
8
ÿ

k“´8

sgnpξ ` kq

«˜

p2mq! e´2π|ξ`k|pσ´1{2q∆

p2π|ξ ` k|∆q2m`1

¸

´

2m`1
ÿ

j“0

γj e
´2π|ξ`k|∆

p2π|ξ ` k|∆qj
`

3
2 ´ σ

˘2m`1´j

ff

,

with γj “
p2mq!

p2m`1´jq! , for 0 ď j ď 2m` 1.

From (3.3.47), (3.3.52) and (3.3.55) we find, for 0 ă ξ ď 1, that

pG`∆pξq “
1

2

8
ÿ

k“´8

k ` 1

|ξ ` k|

«

p2mq! e´2π|ξ`k|pσ´1{2q∆

p2π|ξ ` k|∆q2m`1
´

2m`1
ÿ

j“0

γj e
´2π|ξ`k|∆

p2π|ξ ` k|∆qj
`

3
2 ´ σ

˘2m`1´j

ff

.

The change of variables (3.3.46) leads us directly to the expression (3.3.31) for the majorant.

The proof for the minorant follows along the same lines, starting with Vaaler’s relation

[89, Theorem 9] and the fact that G´∆pk `
1
2q “ F∆pk `

1
2q and pG´∆q

1pk ` 1
2q “ F 1∆pk `

1
2q

for all k P Z, we have

pG´∆pξq “ p1´ |ξ|q
8
ÿ

k“´8

G´∆pk `
1
2q e

´2πipk` 1
2
qξ `

1

2πi
sgnpξq

8
ÿ

k“´8

pG´∆q
1pk ` 1

2q e
´2πipk` 1

2
qξ

“ p1´ |ξ|q
8
ÿ

k“´8

F∆pk `
1
2q e

´2πipk` 1
2
qξ `

1

2πi
sgnpξq

8
ÿ

k“´8

F 1∆pk `
1
2q e

´2πipk` 1
2
qξ.

One now uses Poisson summation with the pairs (3.3.49) and (3.3.54) to derive that

8
ÿ

k“´8

F∆pk `
1
2q e

´2πipk` 1
2
qξ

“
1

2

ż 3{2

σ
pα´ σq2m

˜

8
ÿ

k“´8

log

˜

pk ` 1
2q

2 `∆2

pk ` 1
2q

2 ` pα´ 1
2q

2∆2

¸

e´2πipk` 1
2
qξ

¸

dα

“
1

2

ż 3{2

σ
pα´ σq2m

˜

8
ÿ

k“´8

p´1qk
e´2π|ξ`k|pα´ 1

2
q∆ ´ e´2π|ξ`k|∆

|ξ ` k|

¸

dα

and

8
ÿ

k“´8

F 1∆pk `
1
2q e

´2πipk` 1
2
qξ

“

ż 3{2

σ
pα´ σq2m

˜

8
ÿ

k“´8

˜

pk ` 1
2q

pk ` 1
2q

2 `∆2
´

pk ` 1
2q

pk ` 1
2q

2 ` pα´ 1
2q

2∆2

¸

e´2πipk` 1
2
qξ

¸

dα
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“ πi

ż 3{2

σ
pα´ σq2m

˜

8
ÿ

k“´8

p´1qk sgnpξ ` kq
´

e´2πpα´ 1
2
q|ξ`k|∆ ´ e´2π|ξ`k|∆

¯

¸

dα.

The remaining computations are analogous to the majorant case. This concludes the proof

of the lemma.

3.4 The sum over prime powers

The idea for our proof of Theorem 3.1, in the case of odd n, is to replace the functions

fn,σ in our representation lemma (Lemma 3.8) by appropriate majorants and minorants,

apply the Guinand-Weil explicit formula (Lemma 2.7), and then asymptotically evaluate

the resulting terms. Our majorants and minorants of exponential type 2π∆, denoted here

by m˘∆, are even functions, and hence the resulting sum over prime powers will appear as

1

π

ÿ

ně2

Λpnq
?
n

pm˘∆

ˆ

log n

2π

˙

cospt log nq.

The purpose of this section is provide a detailed qualitative study of this expression. In

order to ease the flow of the proofs below, we collect several auxiliary calculus and number

theory facts in two appendices at the end of the thesis.

3.4.1 The case of the Poisson kernel f´1,σ

Recall that in Lemma 3.9 we denoted the Poisson kernel by hβpxq :“ f´1,σpxq “
β

β2`x2 ,

by introducing the parameter β “ σ ´ 1
2 .

Lemma 3.11 (Sum over prime powers I). Assume the Riemann hypothesis. Let 0 ă β ă 1
2

and ∆ ě 1, and let m˘∆ “ m˘β,∆ be the extremal functions for the Poisson kernel obtained

in Lemma 3.9. Then

1

π

ÿ

ně2

Λpnq
?
n

pm`∆

ˆ

log n

2π

˙

cospt log nq

ě ´
2β ep1´2βqπ∆ ´ 2

1
2
´β

`

1
2 ` β

˘2
` 2

1
2
`βe´4πβ∆

`

1
2 ´ β

˘2

`

1
4 ´ β

2
˘`

1´ e´2πβ∆
˘2 `O

ˆ

∆4

β

˙

(3.4.1)

and

1

π

ÿ

ně2

Λpnq
?
n

pm´∆

ˆ

log n

2π

˙

cospt log nq

ď
2β ep1´2βqπ∆ ´ 2

1
2
´β

`

1
2 ` β

˘2
` 2

1
2
`βe´4πβ∆

`

1
2 ´ β

˘2

`

1
4 ´ β

2
˘`

1` e´2πβ∆
˘2 `O

`

β∆4
˘

.

(3.4.2)

Proof. Let x “ e2π∆ and note that the sums in (3.4.1) and (3.4.2) only run for 2 ď n ď x.
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Using the explicit description for the Fourier transforms pm˘∆ given by (3.3.4) we get

1

π

ÿ

ně2

Λpnq
?
n

pm˘∆

ˆ

log n

2π

˙

cospt log nq

“
e´2πβ∆

`

1¯ e´2πβ∆
˘2

¨

˝

ÿ

nďe2π∆

Λpnq

n1{2

ˆ

e2πβ∆

nβ
´

nβ

e2πβ∆

˙

cospt log nq

˛

‚.

(3.4.3)

In the case of the majorant we use that cospt log nq ě ´1 in (3.4.3), together with Appendix

B.4, to get

1

π

ÿ

ně2

Λpnq
?
n

pm`∆

ˆ

log n

2π

˙

cospt log nq ě ´
e´2πβ∆

`

1´ e´2πβ∆
˘2

ÿ

nďe2π∆

Λpnq

n1{2

ˆ

e2πβ∆

nβ
´

nβ

e2πβ∆

˙

“ ´
e´2πβ∆

`

1´ e´2πβ∆
˘2

˜

2βeπ∆ ´ 21{2´βe2πβ∆
`

1
2 ` β

˘2
` 21{2`βe´2πβ∆

`

1
2 ´ β

˘2

1
4 ´ β

2

`O
´

β e2πβ∆∆4
¯

¸

“ ´
2β ep1´2βqπ∆ ´ 21{2´β

`

1
2 ` β

˘2
` 21{2`βe´4πβ∆

`

1
2 ´ β

˘2

`

1
4 ´ β

2
˘`

1´ e´2πβ∆
˘2 `O

ˆ

∆4

β

˙

,

where we have used the fact

1
`

1´ e´2πβ∆
˘2 ď

1
`

1´ e´β
˘2 !

1

β2
.

In the case of the minorant we use that cospt log nq ď 1 in (3.4.3), together with Appendix

B.4, to get

1

π

ÿ

ně2

Λpnq
?
n

pm´∆

ˆ

log n

2π

˙

cospt log nq ď
e´2πβ∆

`

1` e´2πβ∆
˘2

ÿ

nďe2π∆

Λpnq

n1{2

ˆ

e2πβ∆

nβ
´

nβ

e2πβ∆

˙

“
e´2πβ∆

`

1` e´2πβ∆
˘2

˜

2βeπ∆ ´ 21{2´βe2πβ∆
`

1
2 ` β

˘2
` 21{2`βe´2πβ∆

`

1
2 ´ β

˘2

1
4 ´ β

2

`O
´

β e2πβ∆∆4
¯

¸

“
2β ep1´2βqπ∆ ´ 21{2´β

`

1
2 ` β

˘2
` 21{2`βe´4πβ∆

`

1
2 ´ β

˘2

`

1
4 ´ β

2
˘`

1` e´2πβ∆
˘2 `O

`

β∆4
˘

.

This proves the lemma.

3.4.2 The case of f2m`1,σ, for m ě 0

We now consider the sum over prime powers applied to the extremal functions of expo-

nential type 2π∆ for the even functions f2m`1,σ defined in (3.1.9). The next lemma collects
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the required bounds for our purposes.

Lemma 3.12 (Sum over prime powers II). Assume the Riemann hypothesis. Let m ě 0,
1
2 ď σ ă 1 and ∆ ě 1. Let g˘∆ “ g˘2m`1,σ,∆ be the extremal functions for f2m`1,σ obtained

in Lemma 3.10, and let c ą 0 be a given real number. In the region

π∆p1´ σq2 ě c

we have

¯
1

π

ÿ

ně2

Λpnq
?
n

pg˘∆

ˆ

log n

2π

˙

cospt log nq

ď
p2σ ´ 1qp2mq!

σp1´ σq

ep2´2σqπ∆

p2π∆q2m`2
`Om,c

˜

ep2´2σqπ∆

p1´ σq2∆2m`3

¸

.

(3.4.4)

Proof. Again we let x “ e2π∆ and note that the sum in (3.4.4) only runs for 2 ď n ď x.

Our idea is to explore the formula (3.3.31). First observe that, for 0 ă ξ ă ∆, we have

ÿ

k‰0

|k ` 1|

|ξ ` k∆|

2m`1
ÿ

j“0

γj e
´2π|ξ`k∆|

p2π|ξ ` k∆|qj
`

3
2 ´ σ

˘2m`1´j
!m e´2π∆. (3.4.5)

Using (3.3.31), (3.4.5) and the prime number theorem (it suffices to use the weaker estimate
ř

nďx
Λpnq
?
n
! x1{2) we find that

¯
1

π

ÿ

ně2

Λpnq
?
n

pg˘∆

ˆ

log n

2π

˙

cospt log nq

“ ¯p2mq!
ÿ

nďx

Λpnq
?
n

˜

8
ÿ

k“´8

p˘1qk pk ` 1q e´| lognxk|pσ´1{2q

| log nxk|2m`2

¸

cospt log nq

˘

2m`1
ÿ

j“0

γj
`

3
2 ´ σ

˘2m`1´j
Re

˜

ÿ

nďx

Λpnq

n3{2`itplog nqj`1

¸

`Om
`

x´1{2
˘

“ ¯p2mq!
ÿ

nďx

Λpnq
?
n

˜

8
ÿ

k“´8

p˘1qk pk ` 1q e´| lognxk|pσ´1{2q

| log nxk|2m`2

¸

cospt log nq `Omp1q.

It is now convenient to split the inner sum in the ranges k ě 0 and k ď ´2, and regroup

them as

¯
1

π

ÿ

ně2

Λpnq
?
n

pg˘∆

ˆ

log n

2π

˙

cospt log nq

“ ¯p2mq!
ÿ

nďx

Λpnq
?
n

8
ÿ

k“0

p˘1qk

˜

k ` 1

plog nxkq2m`2 pnxkqσ´1{2

´
k ` 1

`

log xk`2

n

˘2m`2`xk`2

n

˘σ´1{2

¸

cospt log nq `Omp1q.
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Using Appendix B.3 and (7.1.2), we isolate the term k “ 0 and get

¯
1

π

ÿ

ně2

Λpnq
?
n

pg˘∆

ˆ

log n

2π

˙

cospt log nq

“ ¯p2mq!
ÿ

nďx

ˆ

Λpnq

nσplog nq2m`2
´

Λpnq

x2σ´1 n1´σp2 log x´ log nq2m`2

˙

cospt log nq (3.4.6)

`Om,c

ˆ

x1´σ

p1´ σq2plog xq2m`3

˙

.

Observe that the terms

Λpnq

nαplog nq2m`2
´

Λpnq

x2σ´1 n1´σp2 log x´ log nq2m`2

are all nonnegative for n ď x, and we can get upper bounds in (3.4.6) by just using the

trivial inequality

´ 1 ď cospt log nq ď 1. (3.4.7)

Estimate (3.4.4) plainly follows from (3.4.6), (3.4.7) and Appendices B.1 and B.2.

3.5 Proof of Theorem 3.1 in the case of n odd

In this section we prove Theorem 3.1 in the case of odd n ě ´1.

3.5.1 The case n “ ´1

Here we keep the notation β “ σ ´ 1
2 , with 0 ă β ă 1

2 . To further simplify notation, let

m˘∆ “ m˘β,∆ be the extremal functions for the Poisson kernel obtained in Lemma 3.9. From

Lemma 3.8 and Lemma 3.9 we have

´
1

2π
log

t

2π
`

1

π

ÿ

γ

m´∆pt´ γq `O

ˆ

1

t

˙

ď S´1pσ, tq (3.5.1)

ď ´
1

2π
log

t

2π
`

1

π

ÿ

γ

m`∆pt´ γq `O

ˆ

1

t

˙

.

For a fixed t ą 0, we consider the functions `˘∆pzq :“ m˘∆pt´zq. Then p`˘∆pξq “ pm˘∆p´ξqe
´2πiξt

and the condition |`˘∆psq| ! p1` |s|q
´2 when |Re s| Ñ 8 in the strip |Im s| ď 1 follows from

(3.3.6), (3.3.7), (3.3.8) and an application of the Phragmén-Lindelöf principle. Recalling

that pm˘∆ are even functions, we apply the Guinand-Weil explicit formula (Lemma 2.7) and

find that

ÿ

γ

m˘∆pt´ γq “

#

m˘∆

ˆ

t´
1

2i

˙

`m˘∆

ˆ

t`
1

2i

˙

+

´
1

2π
pm˘∆p0q log π
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`
1

2π

ż 8

´8

m˘∆pt´ xqRe
Γ1

Γ

ˆ

1

4
`
ix

2

˙

dx (3.5.2)

´
1

π

ÿ

ně2

Λpnq
?
n

pm˘∆

ˆ

log n

2π

˙

cospt log nq.

We now proceed with an asymptotic analysis of each term on the right-hand side of (3.5.2).

1. First term: From (3.3.7) and (3.3.8) we see that

ˇ

ˇ

ˇ

ˇ

ˇ

m`∆

ˆ

t´
1

2i

˙

`m`∆

ˆ

t`
1

2i

˙

ˇ

ˇ

ˇ

ˇ

ˇ

!
∆2eπ∆

βp1`∆tq
(3.5.3)

and

ˇ

ˇ

ˇ

ˇ

ˇ

m´∆

ˆ

t´
1

2i

˙

`m´∆

ˆ

t`
1

2i

˙

ˇ

ˇ

ˇ

ˇ

ˇ

!
β∆2eπ∆

1`∆t
. (3.5.4)

2. Second term: From (3.3.4) it follows that

pm`∆p0q “ π

ˆ

eπβ∆ ` e´πβ∆

eπβ∆ ´ e´πβ∆

˙

!
1

β
(3.5.5)

and

pm´∆p0q “ π

ˆ

eπβ∆ ´ e´πβ∆

eπβ∆ ` e´πβ∆

˙

! mint1, β∆u. (3.5.6)

3. Third term: Recall that the Poisson kernel hβpxq “
β

β2`x2 defined in (3.3.1) satisfies
ş8

´8
hβpxq dx “ π. Note also that for 0 ă β ď 1

2 and |x| ě 1 we have

hβpxq “
β

β2 ` x2
ď

1

1` x2
. (3.5.7)

Hence, from (3.3.6), we get

0 ď

ż 8

´8

m´∆pxq logp2` |x|q dx

ď

ż 8

´8

hβpxq logp2` |x|q dx

“

ż 1

´1
hβpxq logp2` |x|q dx`

ż

|x|ě1
hβpxq logp2` |x|q dx “ Op1q.

(3.5.8)

From (3.5.6), (3.5.7), (3.5.8), and Stirling’s formula it follows that

1

2π

ż 8

´8

m´∆pt´ xqRe
Γ1

Γ

ˆ

1

4
`
ix

2

˙

dx “
1

2π

ż 8

´8

m´∆pxq
`

log t`Oplogp2` |x|qq
˘

dx

“
log t

2

ˆ

eπβ∆ ´ e´πβ∆

eπβ∆ ` e´πβ∆

˙

`Op1q. (3.5.9)
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Similarly, using (3.3.6) and (3.5.5), we have

1

2π

ż 8

´8

m`∆pt´ xqRe
Γ1

Γ

ˆ

1

4
`
ix

2

˙

dx “
1

2π

ż 8

´8

m`∆pxq
`

log t`Oplogp2` |x|qqq dx

“
log t

2

ˆ

eπβ∆ ` e´πβ∆

eπβ∆ ´ e´πβ∆

˙

`O

ˆ

1

β

˙

. (3.5.10)

4. Fourth term: This term was treated in Lemma 3.11.

Final analysis (lower bound): Combining the estimates (3.5.1), (3.5.2), (3.5.4), (3.5.6),

(3.5.9), and (3.4.2) we derive that

S´1pσ, tq ě ´

«

log t

π

ˆ

e´2πβ∆

1` e´2πβ∆

˙

`
2β ep1´2βqπ∆ ´ 21{2´β

`

1
2 ` β

˘2
` 21{2`βe´4πβ∆

`

1
2 ´ β

˘2

π
`

1
4 ´ β

2
˘`

1` e´2πβ∆
˘2

ff

`O

ˆ

β∆2eπ∆

1`∆t

˙

`O
`

mint1, β∆u
˘

`O
`

β∆4
˘

.

(3.5.11)

Note that in deducing (3.5.11), the term ´p1{2πq log t in (3.5.1) cancels with part of the

leading term in (3.5.9). We now choose π∆ “ log log t in (3.5.11), which is essentially the

optimal choice. Recalling that β “ σ ´ 1
2 , this choice yields

S´1pσ, tq ě ´
plog tq2´2σ

π

˜

1
`

1`plog tq1´2σ
˘`

p2σ ´ 1q

σp1´ σq
`

1`plog tq1´2σ
˘2

¸

`
21´σ σ2 ´ 2σ p1´ σq2 plog tq2´4σ

πσp1´ σq
`

1`plog tq1´2σ
˘2 `O

`

pσ ´ 1
2qplog log tq4

˘

.

ě ´
plog tq2´2σ

π

˜

1
`

1`plog tq1´2σ
˘`

p2σ ´ 1q

σp1´ σq

¸

`O
`

pσ ´ 1
2qplog log tq4

˘

.

(3.5.12)

In the last inequality we only dismissed nonnegative terms. Note the fact that 21´σ σ2 ě

2σ p1 ´ σq2, for 1
2 ď σ ď 1. Finally, notice that in the range (3.1.2) we may use (7.1.2) to

transform the error term of (3.5.12) into the error term on the left-hand side of (3.1.3).

Final analysis (upper bound): Combining the estimates (3.5.1), (3.5.2), (3.5.3), (3.5.5),

(3.5.10), and (3.4.1) we derive that

S´1pσ, tq ď

«

log t

π

ˆ

e´2πβ∆

1´ e´2πβ∆

˙

`
2β ep1´2βqπ∆ ´ 21{2´β

`

1
2 ` β

˘2
` 21{2`βe´4πβ∆

`

1
2 ´ β

˘2

π
`

1
4 ´ β

2
˘`

1´ e´2πβ∆
˘2

ff

(3.5.13)

`O

ˆ

∆2eπ∆

βp1`∆tq

˙

`O

ˆ

1

β

˙

`O

ˆ

∆4

β

˙

.
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We now choose π∆ “ log log t in (3.5.13), which again is essentially the optimal choice.

Recalling that β “ σ ´ 1
2 , this yields

S´1pσ, tq ď
plog tq2´2σ

π

˜

1
`

1´ plog tq1´2σ
˘ `

p2σ ´ 1q

σp1´ σq
`

1´ plog tq1´2σ
˘2

¸

´

`

21´σ σ2 ´ 2σ p1´ σq2 plog tq2´4σ
˘

πσp1´ σq
`

1´plog tq1´2σ
˘2 `O

˜

plog log tq4

σ ´ 1
2

¸

(3.5.14)

ď
plog tq2´2σ

π

˜

1
`

1´ plog tq1´2σ
˘ `

p2σ ´ 1q

σp1´ σq
`

1´ plog tq1´2σ
˘2

¸

`O

˜

plog log tq4

σ ´ 1
2

¸

,

where we have just dismissed a nonpositive term in the last inequality. Observe that

ˇ

ˇ

ˇ

ˇ

ˇ

1´
1

`

1´ plog tq1´2σ
˘2

ˇ

ˇ

ˇ

ˇ

ˇ

!
plog tq1´2σ

`

1´ plog tq1´2σ
˘2 !

1

pσ ´ 1
2q

2plog log tq2
!

1

pσ ´ 1
2q

2plog log tq
.

Therefore we can rewrite (3.5.14) as

S´1pσ, tq ď
plog tq2´2σ

π

˜

1
`

1´ plog tq1´2σ
˘ `

p2σ ´ 1q

σp1´ σq

¸

`O

˜

plog tq2´2σ

pσ ´ 1
2qp1´ σq log log t

¸

`O

˜

plog log tq4

σ ´ 1
2

¸

.

(3.5.15)

Again, in the range (3.1.2) we may use (7.1.2) to transform the error term of (3.5.15) into

the error term on the right-hand side of (3.1.3). This concludes the proof of the theorem in

this case.

3.5.2 The case n ě 1

Let n “ 2m ` 1, with m ě 0. For 1
2 ď σ ă 1 and ∆ ě 1, let g˘∆ “ g˘2m`1,σ,∆ be the

extremal functions for f2m`1,σ obtained in Lemma 3.10.

Case 1: m even. In this case, from Lemma 3.8 and Lemma 3.10 we have

1

2πp2m` 2q!

`

3
2 ´ σ

˘2m`2
log t´

1

πp2mq!

ÿ

γ

g`∆pt´ γq `Omp1q ď S2m`1pσ, tq

ď
1

2πp2m` 2q!

`

3
2 ´ σ

˘2m`2
log t´

1

πp2mq!

ÿ

γ

g´∆pt´ γq `Omp1q.

(3.5.16)

As observed in the case of the majorants for the Poisson kernel, it follows from (3.3.25),

(3.3.26) and the Phragmén-Lindelöf principle that we can then apply the Guinand-Weil

explicit formula (Lemma 2.7) to the functions z ÞÑ g˘∆pt´ zq. This yields

ÿ

γ

g˘∆pt´ γq “

#

g˘∆

ˆ

t´
1

2i

˙

` g˘∆

ˆ

t`
1

2i

˙

+

´
1

2π
pg˘∆p0q log π
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`
1

2π

ż 8

´8

g˘∆pt´ xqRe
Γ1

Γ

ˆ

1

4
`
ix

2

˙

dx (3.5.17)

´
1

π

ÿ

ně2

Λpnq
?
n

pg˘∆

ˆ

log n

2π

˙

cospt log nq.

We again proceed with an asymptotic analysis of each of the terms in the last expression.

1. First term: The estimate (3.3.26) implies that

ˇ

ˇ

ˇ

ˇ

ˇ

g˘∆

ˆ

t´
1

2i

˙

` g˘∆

ˆ

t`
1

2i

˙

ˇ

ˇ

ˇ

ˇ

ˇ

!m
∆2eπ∆

1`∆t
. (3.5.18)

2. Second term: From (3.3.27), it follows that

ˇ

ˇ

pg˘∆p0q
ˇ

ˇ !m 1. (3.5.19)

3. Third term: Using (3.3.25), (3.3.30), and Stirling’s formula we find that

1

2π

ż 8

´8

g˘∆pt´ xqRe
Γ1

Γ

ˆ

1

4
`
ix

2

˙

dx “
1

2π

ż 8

´8

g˘∆pxq
`

log t`Oplogp2` |x|qq
˘

dx

“
log t

2π

˜

π
`

3
2 ´ σ

˘2m`2

p2m` 1qp2m` 2q
´

1

∆

ż 3{2

σ
pα´ σq2m log

˜

1¯ e´2πpα´1{2q∆

1¯ e´2π∆

¸

dα

¸

(3.5.20)

`Omp1q.

4. Fourth term: This term was treated in Lemma 3.12.

Final analysis (lower bound): We combine the leftmost inequality in (3.5.16) with

estimates (3.5.17), (3.5.18), (3.5.19), (3.5.20), and (3.4.4) to get

S2m`1pσ, tq ě
log t

p2mq! 2π2∆

ż 3{2

σ
pα´ σq2m log

˜

1´ e´2πpα´1{2q∆

1´ e´2π∆

¸

dα

´
p2σ ´ 1q

πσp1´ σq

ep2´2σqπ∆

p2π∆q2m`2
`Omp1q `Om

ˆ

∆2eπ∆

1`∆t

˙

`Om,c

˜

ep2´2σqπ∆

p1´ σq2∆2m`3

¸

ě
log t

p2mq! 2π2∆

ż 3{2

σ
pα´ σq2m log

`

1´ e´2πpα´1{2q∆
˘

dα

´
p2σ ´ 1q

πσp1´ σq

ep2´2σqπ∆

p2π∆q2m`2
`Omp1q `Om

ˆ

∆2eπ∆

1`∆t

˙

`Om,c

˜

ep2´2σqπ∆

p1´ σq2∆2m`3

¸

. (3.5.21)
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Observe that

ˇ

ˇ

ˇ

ˇ

ˇ

ż 8

3{2
pα´ σq2m log

`

1˘ e´2πpα´1{2q∆
˘

dα

ˇ

ˇ

ˇ

ˇ

ˇ

!

ż 8

3{2
pα´ 1

2q
2m e´2πpα´1{2q∆ dα

“

ż 8

1
α2me´2απ∆ dα !m

e´π∆

∆2m`2
ď
ep1´2σqπ∆

∆2m`2
.

(3.5.22)

We now choose π∆ “ log log t. Using (3.5.22) and (7.1.2) in (3.5.21) leads us to

S2m`1pσ, tq ě
log t

p2mq! 2π2∆

ż 8

σ
pα´ σq2m log

`

1´ e´2πpα´1{2q∆
˘

dα

´
p2σ ´ 1q

πσp1´ σq

ep2´2σqπ∆

p2π∆q2m`2
`Om,c

˜

ep2´2σqπ∆

p1´ σq2∆2m`3

¸

.

(3.5.23)

From monotone convergence and (3.3.51) we have

ż 8

σ
pα´ σq2m log

`

1´ e´2πpα´1{2q∆
˘

dα “ ´

ż 8

σ
pα´ σq2m

˜

8
ÿ

k“1

e´2kπpα´1{2q∆

k

¸

dα

“ ´

8
ÿ

k“1

1

k

ż 8

σ
pα´ σq2m e´2kπpα´1{2q∆ dα (3.5.24)

“ ´
p2mq!

p2π∆q2m`1

8
ÿ

k“1

e´2kπpσ´1{2q∆

k2m`2
.

Plugging (3.5.24) into (3.5.23) leads us to

S2m`1pσ, tq ě ´

ˆ

1

22m`2 π

˙

plog tq2´2σ

plog log tq2m`2

«

8
ÿ

k“0

1

pk ` 1q2m`2plog tqp2σ´1qk
`

2σ ´ 1

σp1´ σq

ff

`Om,c

ˆ

plog tq2´2σ

p1´ σq2 plog log tq2m`3

˙

.

Final analysis (upper bound): We combine the rightmost inequality in (3.5.16) with

estimates (3.5.17), (3.5.18), (3.5.19), (3.5.20), and (3.4.4) to get

S2m`1pσ, tq ď
log t

p2mq! 2π2∆

ż 3{2

σ
pα´ σq2m log

˜

1` e´2πpα´1{2q∆

1` e´2π∆

¸

dα

`
p2σ ´ 1q

πσp1´ σq

ep2´2σqπ∆

p2π∆q2m`2
`Omp1q `Om

ˆ

∆2eπ∆

1`∆t

˙

`Om,c

˜

ep2´2σqπ∆

p1´ σq2∆2m`3

¸

ď
log t

p2mq! 2π2∆

ż 3{2

σ
pα´ σq2m log

`

1` e´2πpα´1{2q∆
˘

dα

`
p2σ ´ 1q

πσp1´ σq

ep2´2σqπ∆

p2π∆q2m`2
`Omp1q `Om

ˆ

∆2eπ∆

1`∆t

˙

58



`Om,c

˜

ep2´2σqπ∆

p1´ σq2∆2m`3

¸

. (3.5.25)

We now choose π∆ “ log log t. Using (3.5.22) and (7.1.2) in (3.5.25) leads us to

S2m`1pσ, tq ď
log t

p2mq! 2π2∆

ż 8

σ
pα´ σq2m log

`

1` e´2πpα´1{2q∆
˘

dα

`
p2σ ´ 1q

πσp1´ σq

ep2´2σqπ∆

p2π∆q2m`2
`Om,c

˜

ep2´2σqπ∆

p1´ σq2∆2m`3

¸

.

(3.5.26)

As in (3.5.24), now using dominated convergence, we have

ż 8

σ
pα´ σq2m log

`

1` e´2πpα´1{2q∆
˘

dα “
p2mq!

p2π∆q2m`1

8
ÿ

k“1

p´1qk`1 e´2kπpσ´1{2q∆

k2m`2
. (3.5.27)

Finally, plugging (3.5.27) into (3.5.26) gives us

S2m`1pσ, tq ď

ˆ

1

22m`2 π

˙

plog tq2´2σ

plog log tq2m`2

«

8
ÿ

k“0

p´1qk

pk ` 1q2m`2plog tqp2σ´1qk
`

2σ ´ 1

σp1´ σq

ff

`Om,c

ˆ

plog tq2´2σ

p1´ σq2 plog log tq2m`3

˙

.

Case 2: m odd. In the case of m odd, the roles of the majorant g`∆ and minorant g´∆ must

be interchanged due to the presence of the factor p´1qm in the representation lemma (3.2.4).

The remaining computations are exactly the same as in the case of m even.

This concludes the proof of Theorem 3.1 in the case of odd n.

3.6 Proof of Theorem 3.1 in the case of n even

In this section we prove Theorem 3.1 in the case of even n ě 0. Recall that for integer

j ě 0 we have defined

Hjpxq “
8
ÿ

k“0

xk

pk ` 1qj
,

and for odd n ě ´1 we have defined

C˘n,σptq “
1

2n`1π

ˆ

Hn`1

´

˘ p´1qpn`1q{2 plog tq1´2σ
¯

`
2σ ´ 1

σp1´ σq

˙

. (3.6.1)

Throughout this section let us write

`n,σptq :“
plog tq2´2σ

plog log tqn
and rn,σptq :“

plog tq2´2σ

p1´ σq2plog log tqn
.
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3.6.1 The case n “ 0

We now consider 1
2 ă σ ă 1. To treat the case n “ 0 we proceed with a variant of the

method presented in Section 2.6, in which we only use the lower bound for S´1pσ, tq since

this is stable under the limit σ Ñ 1
2

`
.

Let c ą 0 be a given real number. In the region p1´σq2 ě c{2
log log t we have already shown

that

´C´1,σptq `2,σptq `Ocpr3,σptqq ď S1pσ, tq ď C`1,σptq `2,σptq `Ocpr3,σptqq, (3.6.2)

and

´C´´1,σptq `0,σptq `Ocpr1,σptqq ď S´1pσ, tq. (3.6.3)

Error terms estimates. Let pσ, tq be such that p1 ´ σq2 ě c
log log t . Observe that, in the

set tpσ, µq; t ´ 1 ď µ ď t ` 1u, estimates (3.6.2) and (3.6.3) apply (note again the use of

the constant c{2 instead of c in the domains of these estimates). Then, by the mean value

theorem and (3.6.3) we obtain, for 0 ď h ď 1,

Spσ, tq ´ Spσ, t´ hq “ hS´1pσ, t
˚
hq ě ´hC

´
´1,σpt

˚
hq `0,σpt

˚
hq ` hOcpr1,σpt

˚
hqq

“ ´hC´´1,σpt
˚
hq `0,σpt

˚
hq ` hOcpr1,σptqq,

(3.6.4)

where t˚h is a suitable point in the segment connecting t ´ h and t. From the explicit

expression

gptq :“ C´´1,σptq `0,σptq “
1

π

ˆ

1

1` plog tq1´2σ
`

2σ ´ 1

σp1´ σq

˙

plog tq2´2σ

we observe directly that

|g1ptq| !
1

t

and hence, by the mean value theorem, that

ˇ

ˇC´´1,σptq `0,σptq ´ C
´
´1,σpt

˚
hq `0,σpt

˚
hq
ˇ

ˇ ! r1,σptq. (3.6.5)

From (3.6.4) and (3.6.5) it follows that

Spσ, tq ´ Spσ, t´ hq ě ´hC´´1,σptq `0,σptq ` hOcpr1,σptqq. (3.6.6)

Integrating and optimizing. Let ν “ νσptq be a real-valued function such that 0 ă ν ď 1.

For a fixed t, we integrate (3.6.6) with respect to the variable h to get

Spσ, tq ě
1

ν

ż ν

0
Spσ, t´ hq dh´

1

ν

ˆ
ż ν

0
h dh

˙

C´´1,σptq `0,σptq `
1

ν

ˆ
ż ν

0
h dh

˙

Ocpr1,σptqq

“
1

ν

`

S1pσ, tq ´ S1pσ, t´ νq
˘

´
ν

2
C´´1,σptq `0,σptq `Ocpν r1,σptqq.

60



From (3.6.2) we then get

Spσ, tq ě
1

ν

”

´ C´1,σptq `2,σptq ´ C
`
1,σpt´ νq `2,σpt´ νq `Ocpr3,σptqq `Ocpr3,σpt´ νqq

ı

´
ν

2
C´´1,σptq `0,σptq `Ocpν r1,σptqq (3.6.7)

“ ´

”

C´1,σptq ` C
`
1,σptq

ı 1

ν
`2,σptq ´

ν

2
C´´1,σptq `0,σptq `Oc

ˆ

r3,σptq

ν

˙

`Ocpν r1,σptqq,

where we have used (3.6.16) in the last passage.

We now choose ν “ λσptq
log log t in (3.6.7), where λσptq ą 0 is a function to be determined. This

yields

Spσ, tq ě ´

«

´

C´1,σptq ` C
`
1,σptq

¯ 1

λσptq
`
C´´1,σptq

2
λσptq

ff

`1,σptq

`Oc

ˆ

r2,σptq

λσptq

˙

`Ocpλσptq r2,σptqq.

Choosing λσptq in order to minimize the expression in brackets, we find that

λσptq “

˜

2
`

C´1,σptq ` C
`
1,σptq

˘

C´´1,σptq

¸1{2

. (3.6.8)

This leads to the bound

Spσ, tq ě ´
”

2
`

C´1,σptq ` C
`
1,σptq

˘

C´´1,σptq
ı1{2

`1,σptq

`Oc

ˆ

r2,σptq

λσptq

˙

`Ocpλσptq r2,σptqq.
(3.6.9)

Finally, using the trivial estimates

1

π

ˆ

1

2
`

2σ ´ 1

σp1´ σq

˙

ď C´´1,σptq ď
1

π

ˆ

1`
2σ ´ 1

σp1´ σq

˙

,

1

4π

ˆ

1`
2σ ´ 1

σp1´ σq

˙

ď C´1,σptq ď
1

4π

ˆ

ζp2q `
2σ ´ 1

σp1´ σq

˙

,

and
1

4π

ˆ

3

4
`

2σ ´ 1

σp1´ σq

˙

ď C`1,σptq ď
1

4π

ˆ

1`
2σ ´ 1

σp1´ σq

˙

,

one can show that λσptq defined by (3.6.8) verifies the inequalities

1

2
ď λσptq ď 2 ,

which shows that indeed 0 ă ν ď 1 and allows us to write (3.6.9) in our originally intended

form of

Spσ, tq ě ´
”

2
`

C´1,σptq ` C
`
1,σptq

˘

C´´1,σptq
ı1{2

`1,σptq `Ocpr2,σptqq.
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The proof of the upper bound for S0pσ, tq follows along the same lines. Instead of (3.6.4),

one would start with the following inequality, valid for 0 ď h ď 1 and t˚h P rt, t` hs,

Spσ, t` hq ´ Spσ, tq “ hS´1pσ, t
˚
hq ě ´hC

´
´1,σpt

˚
hq `0,σpt

˚
hq ` hOcpr1,σpt

˚
hqq.

3.6.2 The case n ě 2

Let 1
2 ď σ ă 1. In this subsection we show how to obtain the bounds for Snpσ, tq

from the corresponding bounds for Sn´1pσ, tq and Sn`1pσ, tq. This interpolation argument

explores the smoothness of these functions via the mean value theorem in an optimal way.

This extends the material that previously appeared in Section 2.6.

Let us consider here the case of n{2 odd. The case of n{2 even follows the exact same

outline, with the roles of C`n,σptq and C´n,σptq interchanged.

Let c ą 0 be a given real number. In the region p1 ´ σq2 ě c{2
log log t we have already

established that

´C´n`1,σptq `n`2,σptq `On,cprn`3,σptqq ď Sn`1pσ, tq

ď C`n`1,σptq `n`2,σptq `On,cprn`3,σptqq,
(3.6.10)

and

´C´n´1,σptq `n,σptq `On,cprn`1,σptqq ď Sn´1pσ, tq

ď C`n´1,σptq `n,σptq `On,cprn`1,σptqq.
(3.6.11)

Error term estimates. Let pσ, tq be such that p1´σq2 ě c
log log t . Observe that, in the set

tpσ, µq; t´ 1 ď µ ď t` 1u, estimates (3.6.10) and (3.6.11) apply (note the use of c{2 instead

of c in the domains of these estimates). Then, by the mean value theorem and (3.6.11) we

obtain, for ´1 ď h ď 1,

Snpσ, tq´Snpσ, t´ hq “ hSn´1pσ, t
˚
hq

ď
`

χhą0 |h|C
`
n´1,σpt

˚
hq `n,σpt

˚
hq ` χhă0 |h|C

´
n´1,σpt

˚
hq `n,σpt

˚
hq
˘

` |h|On,cprn`1,σpt
˚
hqq (3.6.12)

“
`

χhą0 |h|C
`
n´1,σpt

˚
hq `n,σpt

˚
hq ` χhă0 |h|C

´
n´1,σpt

˚
hq `n,σpt

˚
hq
˘

` |h|On,cprn`1,σptqq ,

where t˚h is a suitable point in the segment connecting t´ h and t, and χhą0 and χhă0 are

the indicator functions of the sets th P R; h ą 0u and th P R; h ă 0u, respectively. We

would like to change t˚h by t in the last line of (3.6.12). For all k ě 0 let us define

fkptq “
1

plog tqp2σ´1qk

plog tq2´2σ

plog log tqn
“
plog tqpk`1qp1´2σq`1

plog log tqn
.
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We shall prove that

ˇ

ˇC´n´1,σpt
˚
hq `n,σpt

˚
hq ´ C

´
n´1,σptq `n,σptq

ˇ

ˇ !n rn`1,σptq. (3.6.13)

Using the mean value theorem, we have that

ˇ

ˇC´n´1,σpt
˚
hq `n,σpt

˚
hq´C

´
n´1,σptq `n,σptq

ˇ

ˇ !n
1

p1´ σq

8
ÿ

k“0

1

pk ` 1qn
ˇ

ˇfkpt
˚
hq ´ fkptq

ˇ

ˇ

“
1

p1´ σq
|t˚h ´ t|

8
ÿ

k“0

1

pk ` 1qn
ˇ

ˇf
1

kpt
˚
h,kq

ˇ

ˇ (3.6.14)

!n
1

p1´ σq

8
ÿ

k“0

ppk ` 1qp2σ ´ 1q ` 1q

pk ` 1qn t˚h,k plog t˚h,k q
pk`1qp2σ´1qplog log t˚h,kq

n
,

where, for each k ě 0, t˚h,k is a point that belongs to the segment connecting t˚h and t.

Observe now that

8
ÿ

k“0

ppk ` 1qp2σ ´ 1q ` 1q

pk ` 1qn t˚h,k plog t˚h,k q
pk`1qp2σ´1qplog log t˚h,kq

n

!n

8
ÿ

k“0

ppk ` 1qp2σ ´ 1q ` 1q

pk ` 1qn t plog t˚h,k q
pk`1qp2σ´1qplog log tqn

!
1

t

«

8
ÿ

k“0

2σ ´ 1

pk ` 1qn´1plogpt´ 1qqpk`1qp2σ´1q

ff

`
1

t

!
1

t
! `n`1,αptq.

(3.6.15)

From (3.6.14) and (3.6.15), we arrive at (3.6.13). In a similar way we observe that

ˇ

ˇC`n´1,σpt
˚
hq `n,σpt

˚
hq ´ C

`
n´1,σptq `n,σptq

ˇ

ˇ !n rn`1,σptq. (3.6.16)

From (3.6.12), (3.6.13), and (3.6.16) we obtain

Snpσ, tq ´ Snpσ, t´ hq ď
`

χhą0 |h|C
`
n´1,σptq `n,σptq ` χhă0 |h|C

´
n´1,σptq `n,σptq

˘

` |h|On,cprn`1,σptqq.
(3.6.17)

Integrating and optimizing. Let a :“ an,σptq and b :“ bn,σptq be real-valued functions,

that shall be properly chosen later, satisfying 0 ď a, b ď 1. In particular, we will be able to

choose them in a way that a` b “ 1 at the end. Let us just assume for now that a` b ě 1

in the following argument. Let ν “ νn,σptq be a real-valued function such that 0 ă ν ď 1.

For a fixed t, we integrate (3.6.17) with respect to the variable h and find that

Snpσ, tq ď
1

pa` bqν

ż bν

´aν
Snpσ, t´ hq dh

`
1

pa` bqν

„
ż bν

´aν

`

χhą0 |h|C
`
n´1,σptq ` χhă0 |h|C

´
n´1,σptq

˘

dh



`n,σptq
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`
1

pa` bqν

„
ż bν

´aν
|h| dh



On,cprn`1,σptqq

“
1

pa` bqν

”

Sn`1pσ, t` aνq ´ Sn`1pσ, t´ bνq
ı

`

«

b2C`n´1,σptq ` a
2C´n´1,σptq

2pa` bq

ff

ν `n,σptq `On,cpν rn`1,σptqq.

Using (3.6.10) and the same error term estimates as in (3.6.13) and (3.6.16) we derive that

Snpσ, tqď
1

pa` bqν

”

C`n`1,σpt`aνq `n`2pσ, t`aνq`C
´
n`1,σpt´bνq `n`2pσ, t´bνq

`On,cprn`3,σpt`aνqq `On,cprn`3,σpt´ bνqq
ı

`

«

b2C`n´1,σptq ` a
2C´n´1,σptq

2pa` bq

ff

ν `n,σptq `On,cpν rn`1,σptqq (3.6.18)

“

«

C`n`1,σptq ` C
´
n`1,σptq

pa` bq

ff

1

ν
`n`2,σptq `

«

b2C`n´1,σptq ` a
2C´n´1,σptq

2pa` bq

ff

ν `n,σptq

`On,c

ˆ

rn`3,σptq

ν

˙

`On,cpν rn`1,σptqq.

Choosing ν “
λn,σptq
log log t in (3.6.18), where λn,σptq ą 0 is a function to be determined (recall

that we required 0 ă ν ď 1), we obtain

Snpσ, tq ď

#«

C`n`1,σptq ` C
´
n`1,σptq

pa` bq

ff

1

λn,σptq
`

«

b2C`n´1,σptq ` a
2C´n´1,σptq

2pa` bq

ff

λn,σptq

+

`n`1,σptq

`On,c

ˆ

rn`2,σptq

λn,σptq

˙

`On,cpλn,σptq rn`2ptqq.

We now choose λn,σptq ą 0 to minimize the expression in brackets, which corresponds to

the choice

λn,σptq “

«

C`n`1,σptq ` C
´
n`1,σptq

pa` bq

ff1{2 «
b2C`n´1,σptq ` a

2C´n´1,σptq

2pa` bq

ff´1{2

. (3.6.19)

This leads to the bound

Snpσ, tq ď 2

«

`

C`n`1,σptq ` C
´
n`1,σptq

˘`

b2C`n´1,σptq ` a
2C´n´1,σptq

˘

2pa` bq2

ff1{2

`n`1,σptq

`On,c

ˆ

rn`2,σptq

λn,σptq

˙

`On,c pλn,σptq rn`2,σptqq .

(3.6.20)

We seek to minimize the expression in brackets on the right-hand side of (3.6.20) in the

variables a and b. It is easy to see that it only depends on the ratio a{b. If we set a “ bx,
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we must minimize the function

W pxq “ 2

«

`

C`n`1,σptq ` C
´
n`1,σptq

˘`

C`n´1,σptq ` x
2C´n´1,σptq

˘

2px` 1q2

ff1{2

.

Note that C˘n´1,σptq ą 0 and C˘n`1,σptq ą 0. Such a minimum is obtained when

x “ C`n´1,σptq{C
´
n´1,σptq, (3.6.21)

leading to the bound

Snpσ, tq ď

«

2
`

C`n`1,σptq ` C
´
n`1,σptq

˘

C`n´1,σptqC
´
n´1,σptq

C`n´1,σptq ` C
´
n´1,σptq

ff1{2

`n`1,σptq

`On,c

ˆ

rn`2,σptq

λn,σptq

˙

`On,c pλn,σptq rn`2,σptqq .

(3.6.22)

We may now set a ` b “ 1. From (3.6.21) we then have the exact values of a and b and

expression (3.6.19) yields

λn,σptq “

«

2
`

C`n`1,σptq ` C
´
n`1,σptq

˘`

C`n´1,σptq ` C
´
n´1,σptq

˘

C`n´1,σptqC
´
n´1,σptq

ff1{2

.

In the definition of C˘n´1,σptq and C˘n`1,σptq, given by (3.6.1), we now use the bounds (for

j ě 2)

1 ď Hjpxq ď ζpjq

for 0 ă x ă 1, and

1´
1

2j
ď Hjpxq ď 1

for ´1 ă x ă 0. Together with the fact that n ě 2, after some computations one arrives at

1

2
ď λn,σptq ď 2.

Therefore, if log log t ě 4, we have ν “
λn,σptq
log log t ď 1, as we had originally required. Finally,

expression (3.6.22) yields

Snpσ, tq ď

«

2
`

C`n`1,σptq ` C
´
n`1,σptq

˘

C`n´1,σptqC
´
n´1,σptq

C`n´1,σptq ` C
´
n´1,σptq

ff1{2

`n`1,σptq `On,c prn`2,σptqq ,

which concludes the proof in this case. The argument for the lower bound of is Snpσ, tq is

entirely symmetric. This completes the proof of Theorem 3.1, when n ě 2 is even.

This completes the proof of our Theorem 3.1.
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Chapter 4

L-functions and bandlimited

approximations

This chapter is comprised of the paper [A3]. We exhibit upper and lower bounds with

explicit constants for some objects related to L-functions in the critical strip, under the

generalized Riemann hypothesis. This is an extension of Theorem 3.1 to a family of entire

L-functions. We also include bounds for the logarithm of these functions. In the final part,

we briefly present how to extend the previous result to a general class of L-functions (not

necessarily entire L-functions), but only in the critical line, extending Theorem 2.3. This is

included in the final part of [A1].

4.1 A general family L-functions

In this section we discuss how to extend the results of the previous chapters to a general

family of L-functions in the framework of [56, Chapter 5]. Below we adopt the notation

ΓRpzq :“ π´z{2 Γ
´z

2

¯

,

where Γ is the usual Gamma function. We consider a meromorphic function Lps, πq on C
which meets the following requirements (for some positive integer d and some ϑ P r0, 1s).

The examples include the Dirichlet L-functions Lps, χq for primitive characters χ.

(i) There exists a sequence tλπpnquně1 of complex numbers (λπp1q “ 1) such that the series

8
ÿ

n“1

λπpnq

ns

converges absolutely to Lps, πq on ts P C ; Re s ą 1u.

(ii) For each prime number p, there are complex numbers α1,πppq, α2,πppq, . . . , αd,πppq such
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that |αj,πppq| ď pϑ, where 0 ď ϑ ď 1 is independent of p, and

Lps, πq “
ź

p

d
ź

j“1

ˆ

1´
αj,πppq

ps

˙´1

,

with absolute convergence on the half plane ts P C; Re s ą 1u.

(iii) For some positive integer N and some complex numbers µ1, µ2, . . . , µd whose real parts

are greater than ´1 and such that tµ1, µ2, . . . , µdu “ tµ1, µ2, . . . , µdu, we define the function

Lps, π8q “ N s{2
d
ź

j“1

ΓRps` µjq,

and the completed L-function by

Λps, πq :“ Lps, π8qLps, πq,

which is a meromorphic function of order 1 that has no poles other than 0 and 1. The

points 0 and 1 are poles with the same order rpπq P t0, 1, . . . , du1. Furthermore, the function

Λps, π̃q :“ Λps, πq satisfies the functional equation

Λps, πq “ κΛp1´ s, π̃q

for some unitary complex number κ.

Using (ii), the logarithmic derivative of Lps, πq has the expression

L1

L
ps, πq “ ´

ÿ

p

d
ÿ

j“1

αj,πppq

ps

ˆ

1´
αj,πppq

ps

˙´1

log p ,

where the right-hand side converges absolutely if Re s ą 1. This shows that the logarithmic

derivative of Lps, πq has a Dirichlet series

L1

L
ps, πq “ ´

8
ÿ

n“2

Λπpnq

ns
, (4.1.1)

where Λπpnq “ 0 if n is not a power of prime and Λπpp
kq “

řd
j“1 αj,πppq

k log p if p is prime

and k is a positive integer. If follows that

ˇ

ˇΛπpnq
ˇ

ˇ ď dΛpnqnϑ. (4.1.2)

In what follows we assume the analogous of the Riemann hypothesis to this family of

L-functions.

1Except for the assumption rpπq ď d, we are in the same framework as [56, Chapter 5], where many
examples may be found.
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Conjecture 4.1 (Generalized Riemann hypothesis). Λps, πq ‰ 0 if Re s ‰ 1
2 .

4.2 Behavior in the critical strip: log |Lpσ ` it, πq| and

Snpσ, t, πq

For t ą 0, let Npt, πq denote the number of zeros ρπ “ βπ ` iγπ of Λps, πq which

satisfy 0 ď βπ ď 1 and ´t ď γπ ď t, counting multiplicities (zeros with ordinate γπ “ ˘t

are counted with weight 1
2). When t is not an ordinate of a zero of Λps, πq, a standard

application of the argument principle gives

Npt, πq “
1

π

ż t

´t
Re

L1

L
p1

2 ` iu, π8q du` Spt, πq ` Spt, π̃q ` 2rpπq `Opmq,

where

Spt, πq “
1

π
argLp1

2 ` it, πq “ ´
1

π

ż 8

1{2

L1

L
pα` it, πq dα

and the term Opmq corresponds to the contribution of the poles of Lps, π8q when ´1 ă

Re pµjq ď ´
1
2 . Generically this contribution is equal to ´2#tµj : ´1 ă Re pµjq ă ´

1
2u ´

#tµj : Re pµjq “ ´
1
2u. If t does correspond to an ordinate of a zero of Λps, πq, we define

Spt, πq “ 1
2 lim
εÑ0

tSpt` ε, πq ` Spt´ ε, πqu .

We extend this definition to the critical strip in the following form. Let n ě 0 be an

integer, 1
2 ď σ ď 1 be a real parameter, and Lps, πq be an L-function in the above setting.

For t P R (and t not coinciding with the ordinate of a zero of Lps, πq when n “ 0) we define

the iterates of the argument function as

Snpσ, t, πq :“ ´
1

π
Im

"

in

n!

ż 8

σ
pα´ σqn

L1

L
pα` it, πq dα

*

. (4.2.1)

If t is the ordinate of a zero of Lps, πq when n “ 0 we define

S0pσ, t, πq :“ lim
εÑ0

S0pσ, t` ε, πq ` S0pσ, t´ ε, πq

2
.

Using the classical notation, we write Snpt, πq “ Snp
1
2 , t, πq for n ě 0 and S0pt, πq “ Spt, πq.

Differentiating under the integral sign and using integration by parts, one can see that

S1npσ, t, πq “ Sn´1pσ, t, πq for t P R (in the case n “ 1 we may restrict ourselves to the case

when t is not the ordinate of a zero of Lps, πq). We finally define

S´1pσ, t, πq :“
1

π
Re

L1

L
pσ ` it, πq,

when t is not the ordinate of a zero of Lps, πq. We can see that S10,σpt, πq “ S´1,σpt, πq.

As in the case of the Riemann zeta-function, the use of extremal functions allows to
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obtain bounds for some objects related with L-functions. The estimates that we present

here are uniform in all parameters, i.e., only will depend of an especial object called analytic

conductor of Lps, πq, defined by

Cpt, πq “ N
d
ź

j“1

p|it` µj | ` 3q.

For instance, Chandee and Soundararajan [29], under the generalized Riemann hypothesis

(GRH), showed for t ą 0

log |Lp1
2 ` it, πq| ď

ˆ

p1` 2ϑq
log 2

2
` op1q

˙

logCpt, πq

log logCpt, πq3{d
. (4.2.2)

The terms op1q above are Oplog log logCpt, πq3{d{ log logCpt, πq3{dq, where the constant im-

plicit by the O-notation may depend on n but does not depend on d or N . Although they

considered explicitly only the case t “ 0, their proof can be adapted to the general case.

For n “ 0 in (4.2.1), Carneiro, Chandee and Milinovich [17], under GRH, showed for

t ą 0

|Spt, πq| ď

ˆ

1

4
`
ϑ

2
` op1q

˙

logCpt, πq

log logCpt, πq3{d
, (4.2.3)

and for n “ 1, Carneiro and Finder [20], under GRH, showed for t ą 0

|S1pt, πq| ď

ˆ

p1` 2ϑq2
π

48
` op1q

˙

logCpt, πq

plog logCpt, πq3{dq2
. (4.2.4)

The terms op1q above are Oplog log logCpt, πq3{d{ log logCpt, πq3{dq.

4.2.1 Main result

The main goal here is to extend the above estimates in the critical strip to a family2 of

entire L-functions assuming GRH. We consider an entire function Lps, πq on C which meets

the previous requirements and the following additional conditions:

(ii’) We restrict ourselves to the case ϑ “ 0.

(iii’) For 1 ď j ď d we have Reµj ě 0.

(iii”) The function Λps, πq is an entire function of order 1 having no zeros in 0 and 1.

To establish the main result for this family of entire L-functions, analogously as Theorem

3.1, we recall the function Hn defined in (3.1.1) as

Hnpxq :“
8
ÿ

k“0

xk

pk ` 1qn
.

2The examples include the entire Dirichlet L-functions Lps, χq for primitive characters χ. Similar families
of entire L-functions are studied in [6, 59].
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In particular, when 0 ă |x| ă 1 we have that

logp1˘ xq

x
“ ˘H1p¯xq. (4.2.5)

Theorem 4.2. Let Lps, πq be an entire L-function satisfying the generalized Riemann hy-

pothesis. Let c ą 0 be a given real number. Then, for 1
2 ă σ ă 1 and t P R in the range

p1´ σq2 log logCpt, πq ě c,

we have the following uniform bounds:

(i) For the logarithm,

´M´
σ ptq

plogCpt, πqq2´2σ

log logCpt, πq
` Oc

ˆ

dµpσq plogCpt, πqq2´2σ

p1´ σq2plog logCpt, πqq2

˙

ď log |Lpσ ` it, πq|

ďM`
σ ptq

plogCpt, πqq2´2σ

log logCpt, πq
`Oc

ˆ

d plogCpt, πqq2´2σ

p1´ σq2plog logCpt, πqq2

˙

.

(ii) For n ě ´1 an integer,

´M´
n,σptq

plogCpt, πqq2´2σ

plog logCpt, πqqn`1
` Oc

ˆ

dµ´n,dpσq plogCpt, πqq2´2σ

p1´ σq2plog logCpt, πqqn`2

˙

ď Snpσ, t, πq

ďM`
n,σptq

plogCpt, πqq2´2σ

plog logCpt, πqqn`1
`Oc

ˆ

dµ`n,dpσq plogCpt, πqq2´2σ

p1´ σq2 plog logCpt, πqqn`2

˙

.

The functions appearing above are given by:

• For the logarithm,

M˘
σ ptq “

1

2

ˆ

H1

´

¯ plogCpt, πqq1´2σ
¯

`
d p2σ ´ 1q

σp1´ σq

˙

and µpσq “
| logpσ ´ 1

2q|

σ ´ 1
2

.

• For n “ ´1,

M˘
´1,σptq “

1

π

ˆ

H0

´

˘ plogCpt, πqq1´2σ
¯

`
d p2σ ´ 1q

σp1´ σq

˙

and µ˘
´1,dpσq “ pσ ´

1
2q
¯1.

• For n “ 0,

M˘
0,σptq “

´

2
`

M`
1,σptq `M

´
1,σptq

˘

M´
´1,σptq

¯1{2
and µ˘n,dpσq “ p2σ ´ 1qd` 1.

• For n ě 1 odd,

M˘
n,σptq “

1

2n`1π

ˆ

Hn`1

´

˘ p´1qpn`1q{2plogCpt, πqq1´2σ
¯

`
d p2σ ´ 1q

σp1´ σq

˙

,

and µ˘n,dpσq “ 1.
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• For n ě 2 even,

M˘
n,σptq “

˜

2
`

M`
n`1,σptq `M

´
n`1,σptq

˘

M`
n´1,σptqM

´
n´1,σptq

M`
n´1,σptq `M

´
n´1,σptq

¸1{2

,

and µ˘n,dpσq “ p2σ ´ 1qd` 1.

When σ Ñ 1
2

`
in the above theorem we obtain a sharpened version of (4.2.2), (4.2.3) and

(4.2.4) for the case of entire L-functions with improved error terms (a factor log log logCpt, πq3{d

has been removed). Also, we obtain a sharpened version of a similar result for Snpt, πq with

n ě 2 (see [18, Theorem 6]), as we will see later.

Furthermore, for a fixed 1
2 ă σ ă 1 we obtain bounds as Cpt, πq Ñ 8.

Corollary 4.3. Let Lps, πq be an entire L-function satisfying the generalized Riemann hy-

pothesis and let n ě ´1. Let 1
2 ă σ ă 1 be a fixed number. Then

log |Lpσ ` it, πq| ď
1

2

ˆ

1` op1q ` d

ˆ

2σ ´ 1

σp1´ σq
` op1q

˙˙

plogCpt, πqq2´2σ

log logCpt, πq
,

and

|Snpσ, t, πq| ď
ωn

2n`1π

ˆ

1` op1q ` d

ˆ

2σ ´ 1

σp1´ σq
` µd,σ op1q

˙˙

plogCpt, πqq2´2σ

plog logCpt, πqqn`1

as Cpt, πq Ñ 8, where ωn “ 1 and µd,σ “ 1 if n is odd, and ωn “
?

2 and µd,σ “ p2σ´1qd`1

if n is even.

4.2.2 Strategy ouline

The proof of Theorem 4.2 follows the same circle of ideas used to prove estimates of

Theorem 3.1. First, we show the results for log |Lpσ ` it, πq| and Snpσ, t, πq, when n ě

´1 is odd. In these cases, we need three ingredients: the representation lemma for our

objects, the Guinand-Weil explicit formula for L-functions, and some extremal bandlimited

approximations. Later, we show the results for Snpσ, t, πq, when n ě 0 is even, using our

argument of interpolation between Sn´1pσ, t, πq and Sn`1pσ, t, πq.

4.3 Representation lemma III

Let m ě 0 be an integer and 1
2 ă σ ď 1 be a real number. In this section we consider

the function fσ : RÑ R defined by

fσpxq “ log

˜

1` x2

`

σ ´ 1
2

˘2
` x2

¸

,
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and the functions f2m`1,σ and f´1,σ defined in (3.1.9) and (3.1.10) respectively. The follow-

ing lemma can be considered as an extension of [14, Eq. (2.1)] and Lemma 3.8, where the

case of the Riemann zeta-function was studied. The proof for entire L-functions follows the

same outline (see [20, Lemma 4]).

Lemma 4.4 (Representation lemma). Let Lps, πq be an entire L-function satisfying the

generalized Riemann hypothesis and m ě 0 be an integer. Then, for 1
2 ă σ ď 1 and t P R

we have

(i) For the logarithm,

log |Lpσ ` it, πq| “
`

3
4 ´

σ
2

˘

logCpt, πq ´
1

2

ÿ

γ

fσpt´ γq `Opdq. (4.3.1)

(ii) If n “ 2m` 1, for m P Zě0, then

S2m`1pσ, t, πq “
p´1qm

2πp2m` 2q!

`

3
2 ´ σ

˘2m`2
logCpt, πq

´
p´1qm

πp2mq!

ÿ

γ

f2m`1,σpt´ γq `Ompdq.
(4.3.2)

(iii) If n “ ´1, then

S´1pσ, t, πq “ ´
1

2π
logCpt, πq `

1

π

ÿ

γ

f´1,σpt´ γq `Opdq. (4.3.3)

The sums in (4.3.1), (4.3.2) and (4.3.3) run over all values of γ such that Λ
`

1
2 ` iγ, π

˘

“ 0,

counted with multiplicity.

Proof. First, we prove (4.3.1). For 1
2 ď σ ď 3

2 we have

log

ˇ

ˇ

ˇ

ˇ

Lpσ ` it, πq

Lp3
2 ` it, πq

ˇ

ˇ

ˇ

ˇ

“ log

ˇ

ˇ

ˇ

ˇ

Λpσ ` it, πq

Λp3
2 ` it, πq

ˇ

ˇ

ˇ

ˇ

` log

ˇ

ˇ

ˇ

ˇ

N p3{2`itq{2

N pσ`itq{2

ˇ

ˇ

ˇ

ˇ

`

d
ÿ

j“1

log

ˇ

ˇ

ˇ

ˇ

ΓR
`

3
2 ` it` µj

˘

ΓRpσ ` it` µjq

ˇ

ˇ

ˇ

ˇ

.

(4.3.4)

We treat each term on the right-hand side of (4.3.4). From Hadamard’s factorization formula

[56, Theorem 5.6 and Eq. (5.29)], the analyticity of Lps, πq and the generalized Riemann

hypothesis, it follows that

log

ˇ

ˇ

ˇ

ˇ

Λpσ ` it, πq

Λ
`

3
2 ` it, π

˘

ˇ

ˇ

ˇ

ˇ

“ ´
1

2

ÿ

γ

log

˜

1` pt´ γq2
`

σ ´ 1
2

˘2
` pt´ γq2

¸

, (4.3.5)
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where the sum runs over all values of γ such that Λ
`

1
2`iγ, π

˘

“ 0, counted with multiplicity.

A simple computation of the second term show that

log

ˇ

ˇ

ˇ

ˇ

N p3{2`itq{2

N pσ`itq{2

ˇ

ˇ

ˇ

ˇ

“
`

3
4 ´

σ
2

˘

logN. (4.3.6)

To analyze the third term, we shall use the Stirling’s formula in the form

Γ1R
ΓR
psq “

1

2
log s`Op1q, (4.3.7)

which is valid for Re s ě 1
2 . Since Reµj ě 0, we have

Re
Γ1R
ΓR
pα` µj ` itq “

1

2
logp|µj ` it| ` 3q `Op1q (4.3.8)

uniformly in 1
2 ď α ď 3

2 , so that

log

ˇ

ˇ

ˇ

ˇ

ΓR
`

3
2 ` it` µj

˘

ΓRpσ ` it` µjq

ˇ

ˇ

ˇ

ˇ

“ Re

ż 3{2

σ
plog ΓRpα` µj ` itqq

1 dα

“

ż 3{2

σ
Re

Γ1R
ΓR
pα` µj ` itq dα

“
`

3
4 ´

σ
2

˘

logp|µj ` it| ` 3q `Op1q.

(4.3.9)

For the left-hand side of (4.3.4), note that

| log |Lps, πq|| ď d log ζpRe sq !
d

2Re s
(4.3.10)

for any s with Re s ě 3
2 . Then, we get

log |Lp3
2 ` it, πq| “ Opdq. (4.3.11)

Finally, using (4.3.5), (4.3.6), (4.3.9) and (4.3.11) in (4.3.4) we obtain for 1
2 ď σ ď 3

2 and

t P R that

log |Lpσ ` it, πq| “
`

3
4 ´

σ
2

˘

logCpt, πq ´
1

2

ÿ

γ

log

˜

1` pt´ γq2
`

σ ´ 1
2

˘2
` pt´ γq2

¸

`Opdq. (4.3.12)

This yields the desired result. In order to prove (4.3.2), we use integration by parts and

(4.3.10) to get

S2m`1pσ, t, πq “
p´1qm

πp2mq!

#

ż 3{2

σ
pα´ σq2m log |Lpα` it, πq|dα

+

`Ompdq. (4.3.13)

Then, inserting (4.3.12) in (4.3.13) and straightforward computations will imply (4.3.2).

Finally, we prove (4.3.3). By the partial fraction descomposition of the logarithmic derivative
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of Lps, πq in [56, Theorem 5.6], we have

L1

L
pσ ` it, πq “

ÿ

ρ

ˆ

1

σ ` it´ ρ
`

1

ρ

˙

`B ´
logN

2
´

d
ÿ

j“1

Γ1R
ΓR
pσ ` it` µjq,

where ReB “ ´Re
ř

ρ ρ
´1. Then, taking the real part of this equation, considering that

ρ “ 1
2 ` iγ and using (4.3.8) we obtain (4.3.3) as required.

As we already know, the sum over the zeros of Λps, πq is complicated to be evaluated

directly. One more time, we replace the functions fσ, f2m`1,σ and f´1,σ in Lemma (4.4)

by an appropriate majorant or minorant of exponential type. We then apply the following

version of the Guinand-Weil explicit formula for L-functions. In our setting of entire L-

functions we shall use the following version (the proof of the general version can be found

in [20, Lemma 5]).

Lemma 4.5. Let Lps, πq be an entire L-function. Let hpsq be analytic in the strip |Im s| ă
1
2 ` ε for some ε ą 0, and assume that |hpsq| ! p1 ` |s|q´p1`δq for some δ ą 0 when

|Re s| Ñ 8. Then

ÿ

ρ

h

˜

ρ´ 1
2

i

¸

“
logN

2π
php0q `

1

π

d
ÿ

j“1

ż 8

´8

hpuqRe
Γ1R
ΓR

`

1
2 ` µj ` iu

˘

du

´
1

2π

8
ÿ

n“2

1
?
n

"

Λπpnqph

ˆ

log n

2π

˙

` Λπpnqph

ˆ

´ log n

2π

˙*

,

where the sum runs over all zeros ρ of Λps, πq and the coefficients Λπpnq are defined by

(4.1.1).

Remark 4.6. We highlight that for a general L-function, the explicit formula in Lemma

4.11 contains terms that are difficult to estimate in the critical strip, in comparison with the

explicit formula for an entire L-function in Lemma 4.5. For this reason, we can not obtain

uniform estimates in the critical strip for a general L-function.

4.4 Extremal bandlimited approximations III

Since that the functions fσ, f2m`1,σ and f´1,σ do not verify the required smoothness

properties to apply the Guinand-Weil formula 4.5, we replace each of these functions by

appropriate extremal majorants and minorants. For the extremal functions of f´1,σ and

f2m`1,σ we use the Lemma 3.9 and Lemma 3.10. For the extremal functions of fσ, the

following lemma shows some properties of these functions.

Lemma 4.7 (Extremal functions for fσ). Let 1
2 ă σ ă 1 and ∆ ě 0.02 be real numbers and

let Ωpσq “ | logpσ´ 1
2q|. Then there is a pair of real entire functions g˘σ,∆ : CÑ C satisfying

the following properties:
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(i) For x P R we have

´
1

1` x2
! g´σ,∆pxq ď fσpxq ď g`σ,∆pxq !

Ωpσq

pσ ´ 1
2q

2 ` x2
. (4.4.1)

Moreover, for any complex number z “ x` iy we have

ˇ

ˇg´σ,∆pzq
ˇ

ˇ !
∆2e2π∆|y|

p1`∆|z|q
, (4.4.2)

and

ˇ

ˇg`σ,∆pzq
ˇ

ˇ !
Ωpσq∆2e2π∆|y|

p1`∆|z|q
. (4.4.3)

(ii) The Fourier transforms of g˘σ,∆, denoted by pg˘σ,∆, are even continuous functions sup-

ported on the interval r´∆,∆s. For 0 ă ξ ă ∆ these are given by

pg˘σ,∆pξq “
8
ÿ

k“´8

p˘1qk
pk ` 1q

|ξ ` k∆|

´

e´2π|ξ`k∆|pσ´1{2q ´ e´2π|ξ`k∆|
¯

. (4.4.4)

(iii) At ξ “ 0 we have

pg˘σ,∆p0q “ 2π
`

3
2 ´ σ

˘

´
2

∆
log

ˆ

1¯ e´p2σ´1qπ∆

1¯ e´2π∆

˙

. (4.4.5)

Proof. The proof of this result follows from [13, Lemma 3.2] (see also [14, Lemma 5-8]).

Remark 4.8. In the lemmas above mentioned (Lemma 3.9, Lemma 3.10 and Lemma 4.7)

we will consider the hypothesis ∆ ě 0.02 instead of ∆ ě 1. This is possible because in the

proof of these results we only used the fact that 1{∆ ! 1.

4.5 Proof of Theorem 4.2

4.5.1 Proof of Theorem 4.2: the logarithm and the case of n odd

In order to prove Theorem 4.2, we shall first apply the Guinand-Weil explicit formula

to the extremal functions and then perform a careful asymptotic analysis of the terms

appearing in the process. We highlight that one of the main technical difficulties of our

proof, when compared with results in [17, 20, 29], is in the analysis of the sums over prime

powers. To obtain the exact asymptotic behavior of such tough terms we shall need explicit

formulas for the Fourier transforms of these extremal functions.

Let m ě 1 be an integer, and c ą 0, ∆ ě 0.02 and 1
2 ă σ ă 1 be real numbers such that

p1 ´ σq2π∆ ě c. Let t P R, β “ σ ´ 1
2 and let h˘∆psq be any of the six extremal functions
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referred to in Lemmas 3.9, 3.10 and 4.7. As explained in the previous section, we replace

each one of the functions f2m`1,σ, f´1,σ and fσ by its extremal functions in Lemma 4.4.

This means that we must bound the sum h˘∆pt ´ γq. If we consider the function htpsq :“

h˘∆pt ´ sq, then phtpξq “ ph˘∆p´ξqe
´2πiξt. It follows from (3.3.6), (3.3.7), (3.3.8), (3.3.25),

(3.3.26), (4.4.1), (4.4.2), (4.4.3) and an application of the Phragmén-Lindelöf principle that

|htpsq| ! p1` |s|q
´2 when |Re s| Ñ 8 in the strip |Im s| ď 1. Therefore, the function htpsq

satisfies the hypotheses of Lemma 4.11. By the generalized Riemann hypothesis and the

fact that ph˘∆ are even functions we obtain

ÿ

γ

h˘∆pt´ γq “
logN

2π
ph˘∆p0q `

1

π

d
ÿ

j“1

ż 8

´8

h˘∆pt´ uqRe
Γ1R
ΓR

`

1
2 ` µj ` iu

˘

du

´
1

2π

8
ÿ

n“2

1
?
n
ph˘∆

ˆ

log n

2π

˙

´

Λπpnq e
´it logn ` Λπpnq e

it logn
¯

,

(4.5.1)

where the sum runs over all values of γ such that Λ
`

1
2`iγ, π

˘

“ 0, counted with multiplicity.

We now proceed to analyze asymptotically each term on the right-hand side of (4.5.1).

1. First term: The first is given by (3.3.4), (3.3.30) and (4.4.5).

2. Second term: We first examine the functions g˘σ,∆. It follows from (4.4.1), for any x ‰ 0,

that

´
1

x2
! g´σ,∆pxq ď fσpxq !

1

x2
.

Hence, from (4.4.2), we deduce

|g´σ,∆pxq| ! min
! 1

x2
,∆2

)

.

Then, using (4.3.7) and the fact that ∆ ě 0.02, we see that

1

π

ż 8

´8

g´σ,∆pt´ uqRe
Γ1R
ΓR

`

1
2 ` µj ` iu

˘

du

“
1

2π

ż 8

´8

g´σ,∆pt´ uq log
ˇ

ˇ

1
2 ` µj ` iu

ˇ

ˇ du`Op∆2q

“
1

2π

ż 8

´8

g´σ,∆puq
 

logp|µj ` it| ` 3q `Oplogp|u| ` 2qq
(

du`Op∆2q

“
logp|µj ` it| ` 3q

2π
pg´σ,∆p0q `Op∆

2q.

(4.5.2)

Similarly, the relation

|g`σ,∆pxq| ! Ωpσqmin
! 1

x2
,∆2

)

implies that

ż 8

´8

g`σ,∆pt´ uqRe
Γ1R
ΓR

`

1
2 ` µj ` iu

˘

du “
logp|µj ` it| ` 3q

2π
pg`σ,∆p0q `OpΩpσq∆

2q. (4.5.3)
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We next examine the functions g˘2m`1,σ,∆. Using (3.3.24) and (4.3.7) we obtain

ż 8

´8

g˘2m`1,σ,∆pt´ uqRe
Γ1R
ΓR

`

1
2 ` µj ` iu

˘

du “
logp|µj ` it| ` 3q

2π
pg˘2m`1,σ,∆p0q

`Omp1q.

(4.5.4)

Finally, we examine the functions m˘β,∆. If 0 ă β ă 1
2 and |x| ě 1 then

hβpxq “
β

β2 ` x2
ď

1

1` x2
.

Hence we get from (3.3.6) that

0 ď

ż 8

´8

m´β,∆pxq logp2` |x|q dx ď

ż 8

´8

hβpxq logp2` |x|q dx

“

ż 1

´1
hβpxq logp2` |x|q dx`

ż

|x|ě1
hβpxq logp2` |x|q dx “ Op1q,

and using (4.3.7) we get

1

π

ż 8

´8

m´β,∆pt´ uqRe
Γ1R
ΓR

`

1
2 ` µj ` iu

˘

du “
logp|µj ` it| ` 3q

2π
pm´β,∆p0q `Op1q. (4.5.5)

Similarly, (3.3.6) and (4.3.7) imply

1

π

ż 8

´8

m`β,∆pt´ uqRe
Γ1R
ΓR

`

1
2 ` µj ` iu

˘

du “
logp|µj ` it| ` 3q

2π
pm`β,∆p0q `O

ˆ

1

β

˙

. (4.5.6)

3. Third term: Let x “ e2π∆ and note that this term is a sum that only runs for 2 ď n ď x.

We start by examining the functions g˘σ,∆. Observe first that

ÿ

k‰0

|k ` 1|

|ξ ` k∆|
e´2π|ξ`k∆| ! e´2π∆, (4.5.7)

when 0 ă ξ ă ∆. Using (4.1.2) (note that ϑ “ 0), (4.4.4), (4.5.7) and the prime number

theorem we find that

ˇ

ˇ

ˇ

ˇ

ˇ

1

2π

8
ÿ

n“2

1
?
n
pg˘σ,∆

ˆ

log n

2π

˙

´

Λπpnq e
´it logn ` Λπpnq e

it logn
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2 d
ÿ

nďx

Λpnq
?
n

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“´8

p˘1qk
pk ` 1q

| log nxk|

´

e´| lognxk|pσ´1{2q ´ e´| lognxk|
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2 d
ÿ

nďx

Λpnq
?
n

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“´8

p˘1qk
pk ` 1qe´| lognxk|pσ´1{2q

| log nxk|

ˇ

ˇ

ˇ

ˇ

ˇ

`Opdq.

It is now convenient to split the inner sum in the ranges k ě 0 and k ď ´2, and regroup
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them as

ˇ

ˇ

ˇ

ˇ

ˇ

1

2π

8
ÿ

n“2

1
?
n
pg˘σ,∆

ˆ

log n

2π

˙

´

Λπpnq e
´it logn ` Λπpnq e

it logn
¯

ˇ

ˇ

ˇ

ˇ

ˇ

(4.5.8)

ď 2 d
ÿ

nďx

Λpnq
?
n

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“0

p˘1qk

˜

k ` 1

plog nxkq pnxkqσ´1{2
´

k ` 1
`

log xk`2

n

˘`

xk`2

n

˘σ´1{2

¸ˇ

ˇ

ˇ

ˇ

ˇ

`Opdq.

For the function pg´σ,∆, using Appendices A.6, B.1 and B.2 in (4.5.8) we obtain that

ˇ

ˇ

ˇ

ˇ

ˇ

1

2π

8
ÿ

n“2

1
?
n
pg´σ,∆

ˆ

log n

2π

˙

´

Λπpnq e
´it logn ` Λπpnq e

it logn
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2 d
ÿ

nďx

Λpnq
?
n

˜

1

nσ´1{2 log n
´

nσ´1{2

p2 log x´ log nqx2σ´1

¸

`Opdq

“
d p2σ ´ 1q

σp1´ σq

ep2´2σqπ∆

π∆
`Oc

˜

d ep2´2σqπ∆

p1´ σq2∆2

¸

.

(4.5.9)

For the function pg`σ,∆, we isolate the term k “ 0 and using Appendices B.1, B.2 and B.3

in (4.5.8) we get

ˇ

ˇ

ˇ

ˇ

ˇ

1

2π

8
ÿ

n“2

1
?
n
pg`σ,∆

ˆ

log n

2π

˙

´

Λπpnq e
´it logn ` Λπpnq e

it logn
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď
d p2σ ´ 1q

σp1´ σq

ep2´2σqπ∆

π∆
`Oc

˜

d ep2´2σqπ∆

pσ ´ 1
2qp1´ σq

2∆2

¸

.

(4.5.10)

We next examine the case g˘2m`1,σ,∆. As we did in the previous case, using (3.3.31), (4.1.2),

(4.5.7) and the prime number theorem it follows that

ˇ

ˇ

ˇ

ˇ

ˇ

1

2π

8
ÿ

n“2

1
?
n
pg˘2m`1,σ,∆

ˆ

log n

2π

˙

´

Λπpnq e
´it logn ` Λπpnq e

it logn
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď d p2mq!
ÿ

nďx

Λpnq
?
n

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“0

p˘1qk

˜

k ` 1

plog nxkq2m`2 pnxkqσ´1{2
´

k ` 1
`

log xk`2

n

˘2m`2`xk`2

n

˘σ´1{2

¸ˇ

ˇ

ˇ

ˇ

ˇ

`Ompdq.

We isolate the term k “ 0 and using Appendices B.1, B.2 and B.3 we get

ˇ

ˇ

ˇ

ˇ

ˇ

1

2π

8
ÿ

n“2

1
?
n
pg˘2m`1,σ,∆

ˆ

log n

2π

˙

´

Λπpnq e
´it logn ` Λπpnq e

it logn
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď
d p2mq! p2σ ´ 1q

σp1´ σq

ep2´2σqπ∆

p2π∆q2m`2
`Om,c

˜

d ep2´2σqπ∆

p1´ σq2∆2m`3

¸

`Om,cpdq.

(4.5.11)

We finally examine the case m˘β,∆. Note that in this case we have p1
2 ´ βq2π∆ ě c. Using
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the fact that pm˘β,∆ are nonnegative (see (3.3.4)), by (4.1.2) and Appendix B.4 we have that

ˇ

ˇ

ˇ

ˇ

ˇ

1

2π

8
ÿ

n“2

1
?
n
pm˘β,∆

ˆ

log n

2π

˙

´

Λπpnq e
´it logn ` Λπpnq e

it logn
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď
d

peπβ∆ ¯ e´πβ∆q2

ÿ

nďx

Λpnq
?
n

ˆ

xβ

nβ
´
nβ

xβ

˙

ď
2 d β ep1´2βqπ∆

p1
4 ´ β

2qp1¯ e´2πβ∆q2
`Oc

˜

d β ep1´2βqπ∆

p1
2 ´ βq

2 ∆ p1¯ e´2πβ∆q2

¸

.

(4.5.12)

Therefore, for the function pm´β,∆ we obtain in (4.5.12) that

ˇ

ˇ

ˇ

ˇ

ˇ

1

2π

8
ÿ

n“2

1
?
n
pm´β,∆

ˆ

log n

2π

˙

´

Λπpnq e
´it logn ` Λπpnq e

it logn
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2d β ep1´2βqπ∆

p1
4 ´ β

2qp1` e´2πβ∆q2
`Oc

˜

d β ep1´2βqπ∆

p1
2 ´ βq

2 ∆

¸

.

(4.5.13)

As for the function pm`β,∆, considering that

1
`

1´ e´2πβ∆
˘2 !

1
`

1´ e´β
˘2 !

1

β2
.

we have

ˇ

ˇ

ˇ

ˇ

ˇ

1

2π

8
ÿ

n“2

1
?
n
pm`β,∆

ˆ

log n

2π

˙

´

Λπpnq e
´it logn ` Λπpnq e

it logn
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2 d β ep1´2βqπ∆

p1
4 ´ β

2qp1´ e´2πβ∆q2
`Oc

˜

d ep1´2βqπ∆

β p1
2 ´ βq

2 ∆

¸

.

(4.5.14)

Final analysis for log |Lpσ ` it, πq|: We first will prove the upper bound. From Lemma

4.4 and (4.4.1) we get

log |Lpσ ` it, πq| ď
`

3
4 ´

σ
2

˘

logCpt, πq ´
1

2

ÿ

γ

g´σ,∆pt´ γq `Opdq. (4.5.15)

In other hand, using (4.5.2) and (4.5.9) in (4.5.1) we obtain

ÿ

γ

g´σ,∆pt´ γq ě
logCpt, πq

2π
pg´σ,∆p0q ´

d p2σ ´ 1q

σp1´ σq

ep2´2σqπ∆

π∆

`Opd∆2q `Oc

ˆ

d ep2´2σqπ∆

p1´ σq2∆2

˙

.

(4.5.16)
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Then, combining (4.4.5), (4.5.16) and (7.1.2) in (4.5.15) we get

log |Lpσ ` it, πq| ď
1

2π∆
log

ˆ

1` e´p2σ´1qπ∆

1` e´2π∆

˙

logCpt, πq `
d p2σ ´ 1q

σp1´ σq

ep2´2σqπ∆

2π∆

`Oc

ˆ

d ep2´2σqπ∆

p1´ σq2∆2

˙

.

Choosing π∆ “ log logCpt, πq3, we have

1

2π∆
log

`

1` e´2π∆
˘

logCpt, πq !
d ep2´2σqπ∆

p1´ σq2∆2
,

and the desired result follows from (4.2.5). The proof of the lower bound is similar, com-

bining (4.4.1), (4.4.5), (4.5.1), (4.5.3), (4.5.10), (7.1.2) and (4.3.1).

Final analysis for S´1pσ, t, πq: Let us first prove the lower bound. From Lemma 4.4 and

(3.3.6) we have

´
1

2π
logCpt, πq `

1

π

ÿ

γ

m´β,∆pt´ γq `Opdq ď S´1pσ, t, πq. (4.5.17)

Combining (3.3.4), (4.5.1), (4.5.5), (4.5.13) in (4.5.17) we deduce that

S´1pσ, t, πq ě ´
logCpt, πq

π

ˆ

e´2πβ∆

1` e´2πβ∆

˙

´
2 d β ep1´2βqπ∆

πp1
4 ´ β

2q
`

1` e´2πβ∆
˘2

`Oc

˜

d β ep1´2βqπ∆

p1
2 ´ βq

2∆

¸

`Opdq.

We now choose π∆ “ log logCpt, πq. Recalling that β “ σ ´ 1
2 , by (7.1.2) this choice yields

S´1pσ, t, πq ě ´
plogCpt, πqq2´2σ

π

˜

1
`

1`plogCpt, πqq1´2σ
˘`

d p2σ ´ 1q

σp1´ σq
`

1`plogCpt, πqq1´2σ
˘2

¸

`Oc

˜

d pσ ´ 1
2qplogCpt, πqq2´2σ

p1´ σq2 log logCpt, πq

¸

.

Observe that this estimate is actually slightly stronger than the one we proposed in Theorem

4.2. For the proof of the upper bound, as before, combining (3.3.4), (3.3.6), (4.5.1), (4.5.6),

(4.5.14), (7.1.2) with (4.3.3), and choosing π∆ “ log logCpt, πq we obtain that

S´1pσ, t, πq ď
plogCpt, πqq2´2σ

π

˜

1
`

1´ plogCpt, πqq1´2σ
˘ `

d p2σ ´ 1q

σp1´ σq
`

1´ plogCpt, πqq1´2σ
˘2

¸

`Oc

˜

d plogCpt, πqq2´2σ

pσ ´ 1
2qp1´ σq

2 log logCpt, πq

¸

. (4.5.18)

3Note that we can choose ∆ in this form, since that log logCpt, πq ě log log 3 ą 0.09 and this implies
that we need ∆ ě 0.028...
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Finally, note that if we write θ “ logCpt, πq, then θ ě log 3 ą 1, and therefore

˜

1´
1

`

1´ θ1´2σ
˘2

¸

!
θ1´2σ

`

1´ θ1´2σ
˘2 !

1

pσ ´ 1
2q

2plog θq2
!

1

pσ ´ 1
2q

2plog θq
.

By applying this bound in (4.5.18), we obtain the desired result.

Final analysis for S2m`1pσ, t, πq: Let us first consider the case where m is even. We will

prove the upper bound. From Lemma 4.4 and (3.3.24) we have that

S2m`1pσ, t, πq ď
1

2πp2m` 2q!

`

3
2 ´ σ

˘2m`2
logCpt, πq

´
1

πp2mq!

ÿ

γ

g´2m`1,σ,∆pt´ γq `Ompdq.
(4.5.19)

Combining (3.3.30), (4.5.1), (4.5.4), (4.5.11) and (7.1.2) in (4.5.19) we get

S2m`1pσ, t, πq ď
logCpt, πq

p2mq! 2π2∆

ż 3{2

σ
pα´ σq2m log

˜

1` e´2πpα´1{2q∆

1` e´2π∆

¸

dα

`
d p2σ ´ 1q

πσp1´ σq

ep2´2σqπ∆

p2π∆q2m`2
`Ompdq `Om,c

˜

d ep2´2σqπ∆

p1´ σq2∆2m`3

¸

.

(4.5.20)

We now choose π∆ “ log logCpt, πq. Using (7.1.2) in (4.5.20) leads us to

S2m`1pσ, t, πq ď
logCpt, πq

p2mq! 2π2∆

ż 8

σ
pα´ σq2m log

´

1` e´2πpα´1{2q∆
¯

dα

`
d p2σ ´ 1q

πσp1´ σq

ep2´2σqπ∆

p2π∆q2m`2
`Om,c

˜

d ep2´2σqπ∆

p1´ σq2∆2m`3

¸

.

Finally, taking into account that

ż 8

σ
pα´ σq2m log

´

1` e´2πpα´ 1
2
q∆
¯

dα “
p2mq!

p2π∆q2m`1

8
ÿ

k“1

p´1qk`1 e´2kπpσ´ 1
2
q∆

k2m`2
,

we obtain the desired result. The proof of the lower bound is obtained similarly, combin-

ing (3.3.24), (3.3.30), (4.5.1), (4.5.4), (4.5.11), (7.1.2) and (4.3.2). When m is odd, the

proof is similar, since only the roles of the majorant g`2m`1,σ,∆ and minorant g´2m`1,σ,∆ are

interchanged due to the presence of the factor p´1qm in Lemma 4.4.

4.5.2 Proof of Theorem 4.2: the case of n even

In order to bound the functions S2mpσ, t, πq when m ě 0 is an integer, we follow a

different argument to the case of S2m`1pσ, t, πq. Although we can obtain a representation

as in Lemma 4.4 (see Lemma 3.8), it is unknown to find extremal majorants and minorants

of exponential type for the associated functions in the representation. Therefore, we follow
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the same outline as in Section 3.6, where similar functions associated with the Riemann

zeta-function were studied. Here we present the necessary changes to adapt the proof in

3.6 for our family of entire L-functions. The main change consists in the suitable use of the

mean value theorem, since the analytic conductor is not sufficiently smooth.

Since we assume the generalized Riemann hypothesis and 1
2 ă σ ă 1, we have that

S12m`1pσ, t, πq “ S2mpσ, t, πq and S12mpσ, t, πq “ S2m´1pσ, t, πq for all t P R. For n ě 0 we

consider the following functions

ln,σptq :“
plogCpt, πqq2´2σ

plog logCpt, πqqn
and rn,σptq :“

d plogCpt, πqq2´2σ

p1´ σq2plog logCpt, πqqn
.

Final analysis for Spσ, t, πq: Let c ą 0 be a given real number. In the range

p1´ σq2 ě
c{16

log logCpt, πq

we have already shown that

´M´
1,σptq `2,σptq `Ocpr3,σptqq ď S1pσ, t, πq ďM`

1,σptq `2,σptq `Ocpr3,σptqq, (4.5.21)

and that

´M´
´1,σptq `0,σptq `Ocpr1,σptqq ď S´1pσ, t, πq. (4.5.22)

Let pσ, tq be such that p1 ´ σq2 ě c
log logCpt,πq . By Appendix A.7 we have that in the set

tpσ, µq; t´ 25 ď µ ď t` 25u, estimates (4.5.21) and (4.5.22) hold. Then, by the mean value

theorem and (4.5.22), we obtain for 0 ď h ď 25,

Spσ, t, πq ´ Spσ, t´ h, πq “ hS´1pσ, t
˚
h, πq

ě ´hM´
´1,σpt

˚
hq `0,σpt

˚
hq ` hOcpr1,σpt

˚
hqq

“ ´hM´
´1,σpt

˚
hq `0,σpt

˚
hq ` hOcpr1,σptqq,

(4.5.23)

where t˚h is a suitable point in the segment connecting t´ h and t. We claim that

|M´
´1,σptq `0,σptq ´M

´
´1,σpt

˚
hq `0,σpt

˚
hq| ! dµd,σ, (4.5.24)

where µd,σ “ p2σ ´ 1qd` 1. In order to prove this, we define the function

g1pxq “
1

π

ˆ

1

1` x1´2σ
`
d p2σ ´ 1q

σp1´ σq

˙

x2´2σ.

Note that |g11pxq| ! µ d for x ą 1, and g1plogCpt, πqq “ M´
´1,σptq `0,σptq. The mean value

theorem applied to the functions g1 and the logarithm imply that
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ˇ

ˇg1plogCpt, πqq ´ g1plogCpt˚h, πqq
ˇ

ˇ ! µd,σ| logCpt, πq ´ logCpt˚h, πq|

ď µd,σ

d
ÿ

j“1

ˇ

ˇ logp|µj ` it| ` 3q ´ logp|µj ` it
˚
h| ` 3q

ˇ

ˇ

! µd,σ

d
ÿ

j“1

ˇ

ˇ|µj ` it| ´ |µj ` it
˚
h|
ˇ

ˇ

ď µd,σ

d
ÿ

j“1

|t´ t˚h| ! dµd,σ. (4.5.25)

We thus obtain (4.5.24), and using (7.1.2) we have that

ˇ

ˇM´
´1,σptq `0,σptq ´M

´
´1,σpt

˚
hq `0,σpt

˚
hq
ˇ

ˇ ! µd,σ r1,σptq. (4.5.26)

From (4.5.23) and (4.5.26) it follows that

Spσ, t, πq ´ Spσ, t´ h, πq ě ´hM´
´1,σptq `0,σptq ` hOcpµd,σ r1,σptqq. (4.5.27)

Let ν “ νσptq be a real-valued function such that 0 ă ν ď 25. For a fixed t, we integrate

(4.5.27) with respect to the variable h to obtain

Spσ, t, πq ě
1

ν

ż ν

0
Spσ, t´ h, πq dh´

1

ν

ˆ
ż ν

0
h dh

˙

M´
´1,σptq `0,σptq

`
1

ν

ˆ
ż ν

0
h dh

˙

Ocpµd,σ r1,σptqq

“
1

ν

`

S1pσ, t, πq ´ S1pσ, t´ ν, πq
˘

´
ν

2
M´
´1,σptq `0,σptq `Ocpν µd,σ r1,σptqq.

From (4.5.21) we then get

Spσ, t, πq ě
1

ν

”

´M´
1,σptq `2,σptq ´M

`
1,σpt´ νq `2,σpt´ νq `Ocpr3,σptqq `Ocpr3,σpt´ νqq

ı

´
ν

2
M´
´1,σptq `0,σptq `Ocpν µd,σ r1,σptqq

“ ´

”

M´
1,σptq `M

`
1,σptq

ı 1

ν
`2,σptq ´

ν

2
M´
´1,σptq `0,σptq

`Oc

ˆ

µd,σ r3,σptq

ν

˙

`Ocpν µd,σ r1,σptqq, (4.5.28)

where the following was used

ˇ

ˇM`
1,σptq `2,σptq ´M

`
1,σpt´ νq `2,σpt´ νq

ˇ

ˇ ! µd,σ r3,σptq. (4.5.29)

We now prove (4.5.29). For x ą 0 define
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g2pxq “
1

4π

˜

8
ÿ

k“0

p´1qk

pk ` 1q2xp2σ´1qk
`
d p2σ ´ 1q

σp1´ σq

¸

x2´2σ

plog xq2
.

Note that M`
1,σptq `2,σptq “ g2plogCpt, πqq. For each k ě 0 and x ě log 3 ą 1 put

fkpxq “
1

xp2σ´1qk

x2´2σ

plog xq2
“
xpk`1qp1´2σq`1

plog xq2
.

Then, for x ą y ě log 3 using the mean value theorem, we have that

|g2pxq ´ g2pyq| !
8
ÿ

k“0

1

pk ` 1q2
ˇ

ˇfkpxq ´ fkpyq
ˇ

ˇ`
d p2σ ´ 1q

p1´ σq
|f0pxq ´ f0pyq|

“ |x´ y|

ˆ 8
ÿ

k“0

1

pk ` 1q2
ˇ

ˇf
1

kpξkq
ˇ

ˇ`
d p2σ ´ 1q

1´ σ

ˇ

ˇf 10pξq
ˇ

ˇ

˙

! |x´ y|

ˆ 8
ÿ

k“0

ppk ` 1qp2σ ´ 1q ` 1q

pk ` 1q2 ξ
pk`1qp2σ´1q
k plog ξkq2

`
d p2σ ´ 1q

1´ σ

˙

,

(4.5.30)

where ξk, ξ P sy, xr for each k ě 0. Observe now that by the mean value theorem

8
ÿ

k“0

ppk ` 1qp2σ ´ 1q ` 1q

pk ` 1q2 ξ
pk`1qp2σ´1q
k plog ξkq2

ď

8
ÿ

k“0

ppk ` 1qp2σ ´ 1q ` 1q

pk ` 1q2 ypk`1qp2σ´1qplog yq2

!
1

plog yq2

«

8
ÿ

k“0

2σ ´ 1

pk ` 1qypk`1qp2σ´1q
` 1`

d p2σ ´ 1q

1´ σ

ff

ď
1

plog yq2

«

8
ÿ

k“0

2σ ´ 1

ypk`1qp2σ´1q
` 1`

d p2σ ´ 1q

1´ σ

ff

!
µd,σ

p1´ σqplog yq2
.

Then, in (4.5.30), by using a similar idea as in (4.5.25), we obtain

ˇ

ˇ

ˇ
g2plogCpt, πqq ´ g2plogCpt´ ν, πqq

ˇ

ˇ

ˇ
!

µd,σ
p1´ σq

| logCpt, πq ´ logCpt´ ν, πq|

plog logCpt, πqq2

!
dµd,σ plogCpt, πqq2´2σ

p1´ σq2plog logCpt, πqq3
.

This proves (4.5.29). We now choose ν “ λσptq
log logCpt,πq in (4.5.28), where λσptq ą 0 is a

function to be determined. This yields

Spσ, tq ě ´

«

´

M´
1,σptq `M

`
1,σptq

¯ 1

λσptq
`
M´
´1,σptq

2
λσptq

ff

`1,σptq

`Oc

ˆ

µd,σ r2,σptq

λσptq

˙

`Ocpµd,σ λσptq r2,σptqq.
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The optimal λσptq minimizing the expression in brackets is

λσptq “

˜

2
`

M´
1,σptq `M

`
1,σptq

˘

M´
´1,σptq

¸1{2

.

and this leads to the bound

Spσ, tq ě ´
”

2
`

M´
1,σptq `M

`
1,σptq

˘

M´
´1,σptq

ı1{2
`1,σptq

`Oc

ˆ

µd,σ r2,σptq

λσptq

˙

`Ocpµd,σ λσptq r2,σptqq.
(4.5.31)

Finally, using some estimates for Hnpxq, one can show that 1
2 ď λσptq ď 2, which implies

that indeed 0 ă ν ď 25, and allows us to write (4.5.31) in our originally intended form of

Spσ, tq ě ´
”

2
`

M´
1,σptq `M

`
1,σptq

˘

M´
´1,σptq

ı

1
2
`1,σptq `Ocpµd,σ r2,σptqq.

The proof of the upper bound for Spσ, tq follows along the same lines.

Final analysis for S2mpσ, t, πq: The proof of this estimates follows the same outline in

§3.6.2. The substantial changes in the use of the mean value theorem are similar with

(4.5.25) and (4.5.30).

4.6 Behavior on the critical line Snpt, πq: general case

In the previous section we established bounds for Snpσ, t, πq for a family of entire L-

functions defined in §4.2.1. Our purpose here is to extend the case σ “ 1
2 to the general

family of L-functions (not necessarily entire) defined in Section 4.1. Essentially we want

to establish an extension of Theorem 2.3 to the functions Snpt, πq associated to the general

family of L-functions.

Theorem 4.9. For n ě 0, let C˘n be the constants defined in Theorem 2.3. Let Lps, πq be

a L-function satisfying the generalized Riemann hypothesis. Then, for all t ą 0 we have

´

´

p1` 2ϑqn`1C´n ` op1q
¯ logCpt, πq

plog logCpt, πq3{dqn`1
ď Snpt, πq

ď

´

p1` 2ϑqn`1C`n ` op1q
¯ logCpt, πq

plog logCpt, πq3{dqn`1
.

The terms op1q above are Oplog log logCpt, πq3{d{ log logCpt, πq3{dq, where the constant im-

plicit by the O-notation may depend on n but does not depend on d or N .

The case n “ 0 of this theorem was established in [17] and the case n “ 1 was established

in [20].
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4.6.1 Sketch of the proof

The proof of Theorem 4.9 follows the same circle of ideas used to prove Theorem 2.3.

We only give here a brief account of the proof, indicating the changes that need to be made.

Notice that we only need to prove Theorem 4.9 for the case n odd, since the case of n ě 2

even follows by reproducing the interpolation argument of Section 2.6.

Let fn be defined by (2.2.8) - (2.2.9) and consider here the dilated functions

rfnpxq “ 2nfn
`

x
2

˘

. (4.6.1)

The following result is the analogue of Lemma 2.5.

Lemma 4.10 (Representation lemma). Let Lps, πq satisfy the generalized Riemann hypoth-

esis. For each n ě 0 and t ą 0 pand t not coinciding with an ordinate of a zero of Lps, πq

in the case n “ 0q we have:

(i) If n “ 2m, for m P Z`, then

S2mpt, πq “
p´1qm

πp2mq!

ÿ

γ

rf2mpt´ γq ` Opdq. (4.6.2)

(ii) If n “ 2m` 1, for m P Z`, then

S2m`1pt, πq “
p´1qm 22m`1

πp2m` 2q!
logCpt, πq ´

p´1qm

πp2mq!

ÿ

γ

rf2m`1pt´ γq ` Opdq. (4.6.3)

The sums in (4.6.2) and (4.6.3) run over all values γ such that Λp1
2 ` iγ, πq “ 0, counted

with multiplicity.

Proof. This follows the outline of the proof of Lemma 2.8 and Lemma 4.4, truncating the

integrals (2.3.4) and (2.3.9) in the point 5{2 instead of 3{2, and introducing the test point

5{2` it instead of 3{2` it in (2.3.5) and (2.3.11). This is due to the inequality4

| log |Lps, πq|| ď d log ζpRe s´ 1q !
d

2Re s
(4.6.4)

for any s with Re s ě 5
2 , (4.1.1) and (4.1.2), in order to better deal with the absolute

convergence issues, and ultimately causes the replacement of fn by the dilated version rfn.

Full details are given in [17, Section 4.2] for n “ 0 and in [20, Lemma 4] for n “ 1.

The explicit formula for the general family of L-functions takes the following form (com-

pare with Lemma 4.5).

4Since now we consider a general L-function, we have that (4.6.4) remains in the range Re s ě 5
2
, while

that in the case of a entire L-function it remains in the range Re s ě 3
2

(see (4.3.10)). For this reason the
dilations (4.6.1) appear in the Lemma 4.10.
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Lemma 4.11 (Explicit formula for L-functions). Let hpsq be analytic in the strip |Im s| ď
1
2 ` ε for some ε ą 0, and assume that |hpsq| ! p1 ` |s|q´p1`δq for some δ ą 0 when

|Re s| Ñ 8. Then

ÿ

ρ

h

˜

ρ´ 1
2

i

¸

“ rpπq

"

h

ˆ

1

2i

˙

` h

ˆ

´
1

2i

˙*

`
logN

2π

ż 8

´8

hpuq du

`
1

π

d
ÿ

j“1

ż 8

´8

hpuqRe
Γ1R
ΓR

`

1
2 ` µj ` iu

˘

du

´
1

2π

8
ÿ

n“2

1
?
n

"

Λπpnqph

ˆ

log n

2π

˙

` Λπpnqph

ˆ

´ log n

2π

˙*

´
ÿ

´1ăRe µjă´
1
2

#

h

˜

´µj ´
1
2

i

¸

` h

˜

µj `
1
2

i

+̧

´
1

2

ÿ

Re µj“´
1
2

#

h

˜

´µj ´
1
2

i

¸

` h

˜

µj `
1
2

i

+̧

,

where the sum runs over all zeros ρ of Λps, πq and the coefficients Λπpnq are defined by

(4.1.1).

Conclusion of the proof

For n “ 2m` 15 we have the extremal majorants and minorants of exponential type ∆

for rf2m`1 given by Lemma 2.8 . These are

rg`2m`1,∆pzq :“ 22m`1g`2m`1,2∆pz{2q and rg´2m`1,∆pzq :“ 22m`1g´2m`1,2∆pz{2q.

We now replace rf2m`1 in (4.6.3) and evaluate using the explicit formula. Let us consider,

for instance, the upper bound in the case where m is odd. Letting hpzq :“ rg`2m`1,∆pt ´ zq

we have

S2m`1pt, πq ď ´
22m`1

πp2m` 2q!
logCpt, πq `

1

πp2mq!

ÿ

γ

hpγq ` Opdq. (4.6.5)

We evaluate
ř

γ hpγq from the explicit formula (Lemma 4.11). From Lemma 2.8 we have

ˇ

ˇ

ˇ
rpπq

 

h
`

1
2i

˘

` h
`

´ 1
2i

˘(

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

´1ăRe µjă´
1
2

!

h
´

´µj´
1
2

i

¯

` h
´

µj`
1
2

i

)̄

`
1

2

ÿ

Re µj“´
1
2

!

h
´

´µj´
1
2

i

¯

` h
´

µj`
1
2

i

)̄

ˇ

ˇ

ˇ

ˇ

ˇ

!m d∆2 eπ∆. (4.6.6)

5We refer the interested reader to [20], where full details are given for the case n “ 1.
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Using Striling’s formula in the form

Γ1R
ΓR
pzq “

1

2
logp2` zq ´

1

z
`Op1q,

valid for Re z ą ´1
2 , we find that

logN

2π

ż 8

´8

hpuqdu`
1

π

d
ÿ

j“1

ż 8

´8

hpuqRe
Γ1R
ΓR

`

1
2 ` µj ` iu

˘

du

“
logCpt, πq

2π

ż 8

´8

hpuq du`Opdq.

(4.6.7)

By Lemma 2.8, the Fourier transform phpξq is supported on r´∆,∆s and is uniformly

bounded. Also, by (4.1.2)

1

2π

8
ÿ

n“2

1
?
n

"

Λπpnqph

ˆ

log n

2π

˙

`Λπpnqph

ˆ

´ log n

2π

˙*

“ O

¨

˝d
ÿ

nďe2π∆

Λpnqnϑ´1{2

˛

‚

“ O
´

d ep1`2ϑqπ∆
¯

,

(4.6.8)

where the last equality follows by the Prime Number Theorem and summation by parts.

From the computations in (2.5.5) and (2.5.6), together with (4.6.5), (4.6.6), (4.6.7) and

(4.6.8) we get

S2m`1pt, πq ď
C`2m`1

pπ∆q2m`2
logCpt, πq `O

´

e´2π∆ logCpt, πq
¯

`O
´

d∆2 ep1`2ϑqπ∆
¯

.

for any t ą 0 and any ∆ ě 1. Choosing

π∆ “ max

#

log logCpt, πq3{d ´ p2m` 5q log log logCpt, πq3{d

p1` 2ϑq
, π

+

yields the desired result. The lower bound for m odd is analogous, using the minorant

rg´2m`1,∆. The upper and lower bounds for m even are also analogous, changing the roles of

rg`2m`1,∆ and rg´2m`1,∆.
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Chapter 5

The Riemann zeta-function and

the resonance method

This chapter is comprised of the paper [A4]. We obtain new estimates for extreme values

of the argument of the Riemann zeta-function and its high moments near the critical line

assuming the Riemann hypothesis. The proof follows similar ideas from Bondarenko and

Seip [9] in the case of Sptq and S1ptq. Our main tools are certain convolution formulas for

the functions Snpσ, tq and a new version of the resonance method of Soundararajan given

in [9]. In particular, we obtain new omega results for Snptq.

5.1 Extreme values for Snpσ, tq

5.1.1 Behavior in the critical line

The function Sptq has an intrinsic oscillating character and trying to understand its

behaviour is a difficult problem up to this date. By Corollary 3.3 we have, under RH,

|Sptq| ď

ˆ

1

4
` op1q

˙

log t

log log t
, (5.1.1)

where op1q “ 1{ log log t. The constant 1{4 and the order of magnitude log t{ log log t are

the best known up to date. In particular we obtain that

lim sup
tÑ8

ˇ

ˇ

ˇ

ˇ

Sptq
log log t

log t

ˇ

ˇ

ˇ

ˇ

ď
1

4
.

On the other hand, Montgomery [73, Theorem 2] established the following omega results,

under RH,

Sptq “ Ω˘

˜

plog tq1{2

plog log tq1{2

¸

. (5.1.2)
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This implies that

lim sup
tÑ8

Sptq
plog log tq1{2

plog tq1{2
ą 0 and lim inf

tÑ8
Sptq

plog log tq1{2

plog tq1{2
ă 0.

It is likely that the estimate (5.1.2) is closer to the behavior of the function Sptq than the

estimate (5.1.1). In fact, a heuristic argument by Farmer, Gonek and Hughes [38] suggests

that Sptq grows as plog t log log tq1{2, in the sense that

lim sup
tÑ8

Sptq

plog log tq1{2plog tq1{2
“

1

π
?

2
.

Similarly, for the case n “ 1, Theorem 3.1 implies that

lim sup
tÑ8

S1ptq
plog log tq2

log t
ě ´

π

24
and lim inf

tÑ8
S1ptq

plog log tq2

log t
ď

π

48
.

Also, Tsang [87, Theorem 5] established, under RH,

S1ptq “ Ω˘

˜

plog tq1{2

plog log tq3{2

¸

, (5.1.3)

and this implies that

lim sup
tÑ8

S1ptq
plog log tq3{2

plog tq1{2
ą 0 and lim inf

tÑ8
S1ptq

plog log tq3{2

plog tq1{2
ă 0.

For the case n ě 2, using the notation in Theorem 3.1, we have

lim sup
tÑ8

Snptq
plog log tqn`1

log t
ě ´C´n and lim inf

tÑ8
Snptq

plog log tqn`1

log t
ď C`n ,

but, to the best of our knowledge, there are no known omega results for Snptq.

Recently, Bondarenko and Seip [9] used their version of the resonance method with a

certain convolution formula for ζpsq to produce large values of the Riemann zeta-function

on the critical line. Besides, using a convolution formula for log ζpsq, they obtained similar

results for the functions Sptq and S1ptq. They showed the following theorem.

Theorem 5.1 (cf. Bondarenko and Seip [9]). Assume the Riemann hypothesis. Let 0 ď

β ă 1 be a fixed real number. Then there exist two positive constants c0 and c1 such that,

whenever T is large enough,

max
TβďtďT

|Sptq| ě c0
plog T q1{2plog log log T q1{2

plog log T q1{2

and

max
TβďtďT

S1ptq ě c1
plog T q1{2plog log log T q1{2

plog log T q3{2
.
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Theorem 5.1 implies the following omega results for Sptq and S1ptq:

Sptq “ Ω

˜

plog t log log log tq1{2

plog log tq1{2

¸

and S1ptq “ Ω`

˜

plog t log log log tq1{2

plog log tq3{2

¸

.

This result can be compared with the Ω˘ results of Montgomery (5.1.2) and the Ω` result

by Tsang (5.1.3).

5.1.2 Behavior in the critical strip

In Theorem 3.1 we established bounds for Snpσ, tq, where 1
2 ă σ ă 1. In particular, for

a fixed number 1
2 ă σ ă 1, under RH, we have that

Snpσ, tq “ On,σ

ˆ

plog tq2´2σ

plog log tqn`1

˙

,

for n ě 0. On the other hand, under RH, Tsang [87, Theorem 2 and p. 382] states the

following lower bound

sup
tPrT,2T s

˘Spσ, tq ě c
plog T q1{2

plog log T q1{2
, (5.1.4)

for 1
2 ď σ ď 1

2 `
1

log log T , T sufficiently large and some constant c ą 0. This result shows

extreme values for Spσ, tq near the critical line. For the critical strip, a result of Montgomery

[73] states that, for a fixed 1
2 ă σ ă 1, we have

Spσ, tq “ Ω˘

ˆ

pσ ´ 1
2q

2 plog tq1´σ

plog log tqσ

˙

.

5.1.3 Main result

The main result of this chapter is to show lower bounds for Snpσ, tq near the critical line,

similar to (5.1.4), for n ě 0.

Theorem 5.2. Assume the Riemann hypothesis. Let 0 ď β ă 1 be a fixed number. Let

σ ą 0 be a real number and T ą 0 sufficiently large in the range

1

2
ď σ ď

1

2
`

1

log log T
.

Then there exists a sequence tcnuně0 of positive real numbers with the following property.

1. If n “ 4m` 1, for m P Zě0:

max
TβďtďT

Snpσ, tq ě cn
plog T q1´σplog log log T qσ

plog log T qσ`n
.
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2. In the other cases:

max
TβďtďT

|Snpσ, tq| ě cn
plog T q1´σplog log log T qσ

plog log T qσ`n
.

Note that when σ “ 1
2 and n “ 0 or 1, we recover Theorem 5.1. Moreover, we obtain

the new omega results on the critical line.

Corollary 5.3. Assume the Riemann hypothesis. Then

1. If n “ 4m` 1, for m P Zě0:

Snptq “ Ω`

˜

plog t log log log tq1{2

plog log tqn`1{2

¸

. (5.1.5)

2. In the other cases:

Snptq “ Ω

˜

plog t log log log tq1{2

plog log tqn`1{2

¸

. (5.1.6)

Remark 5.4. It was pointed out to me by M. Milinovich that: for n ě 3, Corollary 5.3

holds without the Riemann hypothesis. Assuming RH, Corollary 5.3 follows immediately

from Theorem 5.2. If RH fails, an inequality by Fujii [41, Pag. 6] establishes that there is

a zero β0 ` iγ0 of ζpsq with β0 ą 1{2 and γ0 ą 0 such that

Snptq ě An

ˆ

β0 ´
1

2

˙2

tn´2,

for t ą 2γ0, where An is a positive constant. This implies (5.1.5) and (5.1.6).

5.1.4 Strategy outline

Our approach is motivated by the ideas of Bondarenko and Seip [9] on the use of their

version of the resonance method and a convolution formula for log ζpsq. Soundararajan [85]

introduced the resonance method to produce large values of the Riemann zeta-function on

the critical line and large and small central values of L-functions. Also, this method has

been the main tool for finding large values for the Riemann zeta-function, L-functions and

other objects related to them, in the critical strip (for instance in [1, 2, 3, 7, 8, 9, 11, 63]).

The resonance method. The main goal in the work of Soundararajan [85] is to

produce large values of |ζp1
2 ` itq|. The idea of the resonance method is to find a Dirichlet

polynomial

Rptq “
ÿ

mďN

rpmqm´it,

92



which “resonates” with ζp1
2`itq and picks out its large values. Precisely, we need to compute

the smoothed moments

M1pR, T q “

ż 8

´8

|Rptq|2Φ

ˆ

t

T

˙

dt, and

M2pR, T q “

ż 8

´8

ζp1
2 ` itq|Rptq|

2Φ

ˆ

t

T

˙

dt,

Here Φ denotes a smooth, nonnegative function, compactly supported in r1, 2s, with Φptq ď 1

for all t, and Φptq “ 1 for 5{4 ď t ď 7{4. Plainly

max
Tďtď2T

|ζp1
2 ` itq| ě

M2pR, T q

M1pR, T q
.

When N ď T 1´ε we may evaluate M1pR, T q and M2pR, T q easily. These are two quadratic

forms in the unknown coefficients rpnq, and the problem thus reduces to maximizing the

ratio of these quadratic forms. Solving this optimization problem, Soundararajan obtained

good lower bounds for max
Tďtď2T

|ζp1
2 ` itq|.

The use of this Dirichlet polynomial is the principal difference between the works of

Soundararajan [85], Bondarenko and Seip [9] and the works of Selberg and Tsang, where

they used estimates of high moments to detect large values of Dirichlet series. In contrast

to the resonance method of Soundararajan [85], Bondarenko and Seip used significantly

larger primes, a longer Dirichlet polynomial, and replaced the use of the function Φptq of

Soundararajan with the Gaussian function. This replacement produce the change from the

interval rT, 2T s to rT β, T s, where the function |ζp1
2 ` itq| is maximized.

The strategy of the proof of our results for Snpσ, tq can be broadly divided into the

following three main steps:

Step 1: Some results for Snpσ, tq.

The first step is to show bounds for Snpσ, tq and for their moments. Bondarenko and

Seip only needed to use the Littlewood’s estimate (2.2.3) and bounds of Selberg [82] for the

moments of Sptq and S1ptq, assuming the Riemann hypothesis. In our case, we will use a

weaker version of Theorem 3.1, to estimate the function Snpσ, tq uniformly in the critical

strip. As a simple consequence of this result, we will obtain an estimate for its first moment.

Finally, we will extend the convolution formula for log ζpsq given in [87, Lemma 5] for the

function Snpσ, tq. Although we restrict our attention to a region close to the critical line,

we will show the bounds for Snpσ, tq in the critical strip, which may be of interest for other

applications.

Step 2: The resonator.

The construction of our resonator is similar to that made by Bondarenko and Seip [9,

Section 3]. In particular, when σ “ 1
2 we obtain the resonator used by them. A deeper
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analysis in [9, Lemmas 3 and 4] allows us to show these results for a region close to the

critical line. This implies that the main relation between the resonator and the convolution

formula of Snpσ, tq will follow immediately in the same way as obtained in the case σ “ 1
2

[9, Lemma 7].

Step 3: Proof of Theorem 5.2.

We follow the same outline in the proof of [9, Theorem 2]. We will estimate the error

terms in the integral that contains the resonator and the convolution formula of Snpσ, tq.

The main difference in our proof with that of Bondarenko and Seip is in the choice of the

sign for a certain Gaussian kernel. This choice will depend on the remainder of n modulo

4. In particular, this allows to obtain Ω` results for Snptq when n “ 4m` 1, for m P Zě0,

and Ω results in the other cases.

Remark 5.5. Throughout the following sections, for n ě 0 an integer and 1
2 ď σ ď 1 a

fixed real number, we extend the functions t ÞÑ Snpσ, tq to R in such a way that Snpσ, tq is

an odd function when n is even or is an even function when n is odd.

5.2 Some results for Snpσ, tq

The main goal in this section is to show bounds for the functions Snpσ, tq and some

convolution formulas of these functions with certain kernels. Throughout this section we let

n ě 0 be an integer and 0 ă δ ď 1
2 be a real number.

5.2.1 Bounds for Snpσ, tq

We will need a weaker version of Theorem 3.1 to bound the functions Snpσ, tq.

Theorem 5.6. Assume the Riemann hypothesis. We have the uniform bound

Snpσ, tq “ On,δ

ˆ

plog tq2´2σ

plog log tqn`1

˙

in 1
2 ď σ ď 1´ δ ă 1 and t ą 0 sufficiently large. In particular, we obtain for all t P R that

Snpσ, tq “ On,δplogp|t| ` 2qq. (5.2.1)

Proof. It is enough to show when σ ą 1
2 . For t sufficiently large we have that

p1´ σq2 log log t ě δ2 log log t ě 1.
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Then, by Theorem 3.1 we have

`

´ C´n,σptq `On,δp1q
˘plog log tq2´2σ

plog log tqn`1
ď Snpσ, tq

ď
`

C`n,σptq `On,δp1q
˘plog log tq2´2σ

plog log tqn`1
,

(5.2.2)

where C˘n,σptq are positive functions. For n ě 1 odd, these functions are given by:

C˘n,σptq “
1

2n`1π

ˆ

Hn`1

´

˘ p´1qpn`1q{2plog tq1´2σ
¯

`
2σ ´ 1

σp1´ σq

˙

, (5.2.3)

where

Hnpxq “
8
ÿ

k“0

xk

pk ` 1qn
.

Note that when m ě 2, we have the bounds 1 ´ 2´m ď Hmpxq ď ζpmq, for |x| ď 1.

Therefore, we obtain in (5.2.3) for n ě 1 odd and t sufficiently large

an,δ ď C˘n,σptq ď bn,δ, (5.2.4)

for some positive constants an,δ and bn,δ. Using (5.2.2) we obtain the desired result in this

case. For n ě 2 even, these functions C˘n,σptq are given by:

C˘n,σptq “

˜

2
`

C`n`1,σptq ` C
´
n`1,σptq

˘

C`n´1,σptqC
´
n´1,σptq

C`n´1,σptq ` C
´
n´1,σptq

¸1{2

.

Since (5.2.4) holds for C˘n´1,σptq and C˘n`1,σptq, we have a similar estimate for C˘n,σptq, and

this implies the desired result in this case. When n “ 0 we have that

C˘0,σptq “
´

2
`

C`1,σptq ` C
´
1,σptq

˘

C´1,σptq
¯1{2

,

where the function C´1,σptq is defined by

C´1,σptq “
1

π

ˆ

1

1` plog tq1´2σ
`

2σ ´ 1

σp1´ σq

˙

.

Using (5.2.4) and a simple bound for C´1,σptq, we bound C˘0,σptq and we conclude. Thefefore,

it follows easily that (5.2.1) is valid for t ě t0 where t0 is sufficiently large, and using the

fact that the functions Snpσ, tq are bounded in r12 , 1´ δs ˆ r0, t0s we conclude the proof.

As a simple consequence we have the following estimate

ż T

0
|Snpσ, tq|dt “ On,δpT log T q, (5.2.5)

uniformly in 1
2 ď σ ď 1 ´ δ ă 1 and T ě 2. Although this estimate is weak, it is sufficient
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for our purposes. For the case σ “ 1
2 , better estimates are given by Littlewood [65, Theorem

9 and p. 179] for all n ě 0.

5.2.2 Convolution formula

Now, we will obtain convolution formulas for the functions Snpσ, tq with certain kernels.

The next lemma was introduced by Selberg [82], and was also used by Tsang to study the

functions Sptq and S1ptq [87, 88]. Since we assume the Riemann hypothesis, the factor that

contains the zeros outside the critical line disappears.

Lemma 5.7. Assume the Riemann hypothesis. Suppose that 1
2 ď σ ď 2, and let Kpx` iyq

be an analytic function in the horizontal strip σ ´ 2 ď y ď 0 satisfying the growth estimate

Vσpxq :“ max
σ´2ďyď0

|Kpx` iyq| “ O

ˆ

1

|x| log2 |x|

˙

when |x| Ñ 8. Then for every t ‰ 0, we have

ż 8

´8

log ζpσ ` ipt` uqqKpuqdu “
8
ÿ

m“2

Λpmq

mσ`it logm
pK

ˆ

logm

2π

˙

`O
`

Vσp´tq
˘

. (5.2.6)

Proof. See [87, Lemma 5].

It is clear that the above lemma gives a convolution formula for the function Spσ, tq. To

obtain a similar formula for the function Snpσ, tq when n ě 1, we need an expression that

connects the function Snpσ, tq with log ζpsq.

Lemma 5.8. For 1
2 ď σ ď 1 and t ‰ 0 we have

Snpσ, tq “
1

π
Im

"

in

pn´ 1q!

ż 8

σ
pα´ σqn´1 log ζpα` itq dα

*

.

Proof. This follows from Lemma 3.7 and integration by parts.

Using this expression we obtain the following convolution formula. This generalizes

Tsang’s conditional formula in [88] (or [9, Eq. (10)].

Proposition 5.9. Assume the Riemann hypothesis and the same conditions for the function

Kpx` iyq as in Lemma 5.7. Suppose further that K is an even real-valued function (or odd

real-valued function). Then for 1
2 ď σ ď 1 and t ‰ 0, we have

ż 8

´8

Snpσ, t`sqKpsq dr “
1

π
Im

"

in
8
ÿ

m“2

Λpmq

mσ`itplogmqn`1
pK

ˆ

logm

2π

˙*

`On
`

V1{2ptq`||K||1
˘

.
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Proof. For the case n “ 0, we only need to take imaginary parts in (5.2.6). For n ě 1, by

Lemma 5.8 we get

Snpσ, tq “
1

π
Im

"

in

pn´ 1q!

ż 2

σ
pα´ σqn´1 log ζpα` itq dα

*

`Onp1q.

Plugging this in Lemma 5.7 we obtain

ż 8

´8

Snpσ, t` sqKpsqds

“
1

π

ż 8

´8

Im

"

in

pn´ 1q!

ż 2

σ
pα´ σqn´1 log ζpα` ipt` sqq dα

*

Kpsq ds`On
`

||K||1
˘

“
1

π
Im

#

in

pn´ 1q!

ż 2

σ
pα´ σqn´1

˜

ż 8

´8

log ζpα` ipt` sqqKpsq ds

¸

dα

+

`On
`

||K||1
˘

“
1

π
Im

#

in

pn´ 1q!

ż 2

σ
pα´ σqn´1

˜

8
ÿ

m“2

Λpmq

mα`it logm
pK

ˆ

logm

2π

˙

¸

dα

+

(5.2.7)

`On
`

V1{2ptq ` ||K||1
˘

“
1

π
Im

#

in

pn´ 1q!

8
ÿ

m“2

Λpmq

mit logm
pK

ˆ

logm

2π

˙ˆ
ż 2

σ

pα´ σqn´1

mα
dα

˙

+

`On
`

V1{2ptq ` ||K||1
˘

,

where the interchange of the integrals is justified by Fubini’s theorem, considering the esti-

mates [74, Theorem 13.18, Theorem 13.21]. Using [50, §2.321 Eq.2]) we obtain that

ż 2

σ

pα´ σqn´1

mα
dα “

βn´1

mσplogmqn
´

1

m2

n´1
ÿ

k“0

βk
plogmqk`1

p2´ σqn´1´k,

where βk “
pn´1q!
pn´1´kq! . This implies that for each m ě 2 we get

ż 2

σ

pα´ σqn´1

mα
dα “

pn´ 1q!

mσplogmqn
`On

ˆ

1

m3{2plogmqn

˙

.

Inserting this in (5.2.7), and considering that || pK||8 ď ||K||1, we obtain the desired result.

5.3 The resonator

In this section we will construct the resonator. The construction of our resonator is

similar to the resonator developed by Bondarenko and Seip [9, Section 3]. The results

presented here are extensions of their results, for a region near the critical line. The resonator
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is the function of the form |Rptq|2, where

Rptq “
ÿ

mPM1

rpmqm´it,

and M1 is a suitable finite set of integers. Let σ be a positive real number and N be a

positive integer sufficiently large, such that

1

2
ď σ ď

1

2
`

1

log logN
. (5.3.1)

Our resonator will depend on σ andN . For simplicity of notation, we write log2 x :“ log log x

and log3 x :“ log log log x. Let P be the set of prime numbers p such that

e logN log2N ă p ď exp
`

plog2Nq
1{8

˘

logN log2N. (5.3.2)

We define fpnq to be the multiplicative function supported on the set of square-free numbers

such that

fppq :“

ˆ

plogNq1´σplog2Nq
σ

plog3Nq
1´σ

˙

1

pσ plog p´ log2N ´ log3Nq
,

for p P P and fppq “ 0 otherwise. For each k P
 

1, ¨ ¨ ¨,
“

plog2Nq
1{8

‰(

we define the following

sets:

Pk :“
 

p : prime number such that ek logN log2N ă p ď ek`1 logN log2N
(

,

Mk :“

"

n P supp pfq : n has at least αk :“
3plogNq2´2σ

k2plog3Nq
2´2σ

prime divisors in Pk

*

,

M 1
k :“

 

n PMk : n only has prime divisors in Pk
(

.

Finally, we define the set

M :“ supp pfqz

rplog2Nq
1{8s

ď

k“1

Mk.

Note that if m PM and d|m then d PM.

Lemma 5.10. We have that |M| ď N , where |M| represents the cardinality of M.

Proof. The proof follows the same outline that [7, Lemma 2]. The main difference is the

appearance of the term plog3Nq
2σ´1, which is well estimated, whenever (5.3.1) holds. It

allows us to obtain the same estimate for the cardinality of M as the case σ “ 1
2 . By [7,
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Eq. (9)-(10)], we have that

ˆ

rxs

rys

˙

ď exp
`

yplog x´ log yq ` 2y ` log x
˘

,

for 1 ď y ď x and

2

ˆ

m

n´ 1

˙

ď

ˆ

m

n

˙

,

for 3n ´ 1 ď m. By the prime number theorem, the cardinality of each Pk is at most

ek`1 logN . Therefore, using the above inequalities and (5.3.1)

|M| ď

rplog2 Nq
1{8s

ź

k“1

rαks
ÿ

j“0

ˆ

“

ek`1 logN
‰

j

˙

ď

rplog2 Nq
1{8s

ź

k“1

2

ˆ

“

ek`1 logN
‰

rαks

˙

ď exp

˜

rplog2 Nq
1{8s

ÿ

k“1

3plogNq2´2σ

plog3Nq
2´2σ

˜

1

k
`

3` 2 log k

k2
`
p2σ ´ 1q log2N

k2
`
p2´ 2σq log4N

k2

¸

` 3k ` log2N

¸

ď exp

˜

ˆ

3

4
` op1q

˙

plogNq2´2σplog3Nq
2σ´1

¸

ď exp

˜

ˆ

3

4
` op1q

˙

plogNqplog3Nq
2{ log2 N

¸

.

Then, for N sufficiently large we get that |M| ď N .

Lemma 5.11. For all k “ 1, ¨ ¨ ¨, rplog2Nq
1{8s we have, as N Ñ8

ÿ

p PPk

1

p2σ
“ p1` op1qq

ż ek`1 logN log2 N

ek logN log2N

1

y2σ log y
dy,

where op1q is independent of k. In particular, we have that

pd` op1qq
1

plog2Nq
2σ
ă

ÿ

p PPk

1

p2σ
ă p2` op1qq

1

plog2Nq
2σ
, (5.3.3)

for some constant 0 ă d ă 1.

Proof. Using [74, Theorem 13.1], under the Riemann hypothesis we have

πpxq “

ż x

2

1

log y
dy `O

`

x1{2 log x
˘

,

where πpxq is the function that counts the prime numbers not exceeding x. Then, using

integration by parts we get
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ÿ

p PPk

1

p2σ
“

ż ek`1 logN log2N

ek logN log2 N

1

y2σ log y
dy `O

˜

ż ek`1 logN log2N

ek logN log2N

log y

y2σ`1{2
dy

¸

“

ˆ

1`O

ˆ

1

plogNq1{4

˙˙
ż ek`1 logN log2 N

ek logN log2N

1

y2σ log y
dy.

Now we can see that

ż ek`1 logN log2N

ek logN log2N

1

y2σ log y
dy ď

ek logN log2Npe´ 1q

pek logN log2Nq
2σ log

`

ek logN log2N
˘ ă

2

plog2Nq
2σ
.

On the other hand, we know that pek logNq2σ´1 ă plogNq4σ´2 ď e4 for all 1 ď k ď

rplog2Nq
1{8s. Therefore

ż ek`1 logN log2N

ek logN log2N

1

y2σ log y
dy ě

ek logN log2Npe´ 1q

pek`1 logN log2Nq
2σ log

`

ek`1 logN log2N
˘ ą

d

plog2Nq
2σ
,

for some constant 0 ă d ă 1.

The following lemma can be considered as an extension of [9, Lemma 4] to the region

(5.3.1).

Lemma 5.12. We have

1
ÿ

lPN
fplq2

ÿ

nPM
fpnq2

ÿ

p|n

1

fppq pσ
ě c

plogNq1´σplog3Nq
σ

plog2Nq
σ

,

for some universal constant c ą 0.

Proof. The proof is similar to [9, Lemma 4]. For each k P
 

1, ¨ ¨ ¨,
“

plog2Nq
1{8

‰(

we define

the following sets:

Lk :“

"

n P supp pfq : n has at most βk :“
d plogNq2´2σ

12k2plog3Nq
2´2σ

prime divisors in Pk

*

,

where d is the mentioned constant in Lemma 5.11, and

L1k :“
 

n P Lk : n only has prime divisors in Pk
(

.

Finaly, we define the set

L :“Mz

rplog2Nq
1{8s

ď

k“1

Lk.
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Now to prove the lemma, it is enough to show that

1
ÿ

lPN
fplq2

ÿ

nRL
fpnq2 “ op1q, as N Ñ8. (5.3.4)

Indeed, using (5.3.4) and the fact that L ĂM we get

1
ÿ

lPN
fplq2

ÿ

nPM
fpnq2

ÿ

p|n

1

fppq pσ
ě

1
ÿ

lPN
fplq2

ÿ

nPM
fpnq2 min

nPL

ÿ

p|n

1

fppq pσ

ě
`

1´ op1q
˘

min
nPL

ÿ

p|n

1

fppq pσ

“
`

1´ op1q
˘

rplog2Nq
1{8s

ÿ

k“1

d plogNq2´2σ

12k2plog3Nq
2´2σ

min
pPPk

1

fppq pσ

ě
`

1´ op1q
˘

rplog2Nq
1{8s

ÿ

k“1

d plogNq2´2σ

12k2plog3Nq
2´2σ

ˆ

kplog3Nq
1´σ

plogNq1´σplog2Nq
σ

˙

ě c
plogNq1´σplog3Nq

σ

plog2Nq
σ

,

for some constant c ą 0. Therefore, it remains to prove (5.3.4). Since

L :“ supp pfqz

rplog2 Nq
1{8s

ď

k“1

`

Mk Y Lk
˘

,

it is enough to prove that when N Ñ8

1
ÿ

lPN
fplq2

rplog2Nq
1{8s

ÿ

k“1

ÿ

nPLk

fpnq2 “ op1q, (5.3.5)

and

1
ÿ

lPN
fplq2

rplog2 Nq
1{8s

ÿ

k“1

ÿ

nPMk

fpnq2 “ op1q. (5.3.6)

First we will prove (5.3.5). For each k P
 

1, ¨ ¨ ¨,
“

plog2Nq
1{8

‰(

and for any 0 ă b ă 1 we

have

1
ÿ

lPN
fplq2

ÿ

nPLk

fpnq2 “
1

ź

p PPk

p1` fppq2q

ÿ

nPL1k

fpnq2 ď b´βk
ź

p PPk

`

1` bfppq2
˘

p1` fppq2q

ď b´βk exp

˜

pb´ 1q
ÿ

p PPk

fppq2

1` fppq2

¸

.

(5.3.7)
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Since fppq ď 1, using the left-hand side inequality of (5.3.3) we get

ÿ

p PPk

fppq2

1` fppq2
ě

1

2

ÿ

p PPk

fppq2

“

ˆ

plogNq2´2σplog2Nq
2σ

2plog3Nq
2´2σ

˙

ÿ

p PPk

1

p2σ plog p´ log2N ´ log3Nq
2

ě

ˆ

plogNq2´2σ

8k2plog3Nq
2´2σ

˙

pd` op1qq.

This implies in (5.3.7) that

1
ÿ

lPN
fplq2

ÿ

nPLk

fpnq2 ď exp

˜

ˆ

d

8
pb´ 1q ´

d

12
log b` op1q

˙

plogNq2´2σ

k2plog3Nq
2´2σ

¸

.

Therefore, choosing b close to 1 we obtain 3pb ´ 1q ´ 2 log b ă 0 and summing over k we

obtain (5.3.5). The proof of (5.3.6) is similar. For each k P
 

1, ¨ ¨ ¨,
“

plog2Nq
1{8

‰(

and for

any b ą 1 we get

1
ÿ

lPN
fplq2

ÿ

nPMk

fpnq2 ď b´αk exp

ˆ

pb´ 1q
ÿ

p PPk

fppq2
˙

. (5.3.8)

Using the right-hand side inequality of (5.3.3) we have

ÿ

pPPk

fppq2 ď

ˆ

plogNq2´2σ

k2plog3Nq
2´2σ

˙

p2` op1qq.

This implies in (5.3.8) that

1
ÿ

lPN
fplq2

ÿ

nPLk

fpnq2 ď exp

˜

`

2pb´ 1q ´ 3 log b` op1q
˘ plogNq2´2σ

k2plog3Nq
2´2σ

¸

.

Finally, choosing b close to 1 we obtain 2pb´ 1q´ 3 log b ă 0 and summing over k we obtain

(5.3.6).

5.3.1 Construction of the resonator

Let 0 ď β ă 1 be a fixed number and consider the positive real number κ “ p1 ´ βq{2.

Note that κ` β ă 1. Let σ be a positive real number and T sufficiently large such that

1

2
ď σ ď

1

2
`

1

log log T
.

Then we write N “ rT κs. Note that σ and N satisfy the relation (5.3.1). Now, let J be the

set of integers j such that
”

`

1 ` T´1
˘j
,
`

1 ` T´1
˘j`1

¯

Ş

M ‰ H, and we define mj to be
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the minimum of
“

p1` T´1qj , p1` T´1qj`1
˘

XM for j in J . Consider the set

M1 :“ tmj : j P J u

and finally we define

rpmjq :“

˜

ÿ

nPM,p1`T´1qj´1ďnďp1`T´1qj`2

fpnq2

¸1{2

,

for every mj PM1. This defines our Dirichlet polynomial

Rptq “
ÿ

mPM1

rpmqm´it.

Proposition 5.13. We have the following properties:

(i) |M1| ď |M| ď N .

(ii)
ÿ

mPM1

rpmq2 ď 4
ÿ

lPM
fplq2.

(iii) |Rptq|2 ď Rp0q2 ! T κ
ÿ

lPM
fplq2.

Proof. piq and piiq follow by the definition of M, M1 and Lemma 5.10. The left-hand side

inequality of piiiq is obvious. The right-hand side inequality of piiiq follows by piq, piiq and

the Cauchy-Schwarz inequality.

5.3.2 Estimates with the resonator

The proofs of the following results are similar to the case σ “ 1
2 . According to the

notation in [9] we write Φptq “ e´t
2{2. Then pΦptq “

?
2πΦp2πtq.

Lemma 5.14. We have

ż 8

´8

|Rptq|2 Φ

ˆ

t

T

˙

dt ! T
ÿ

lPM
fplq2.

Proof. The proof is similar to [9, Lemma 5] and we omit the details.

Lemma 5.15. There exists a positive constant c ą 0 such that if

Gptq :“
8
ÿ

m“2

Λpmq am
mσ`it logm

is absolutely convergent and am ě 0 for every m ě 2, then

ż 8

´8

Gptq|Rptq|2 Φ

ˆ

t

T

˙

dt ě c T
plog T q1´σplog3 T q

σ

plog2 T q
σ

ˆ

min
pPP

ap

˙

ÿ

lPM
fplq2.
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Proof. The proof follows the same outline of [9, Lemma 7], replacing [9, Lemma 4] by Lemma

5.12. We omit the details.

5.4 Proof of Theorem 5.2

Assume the Riemann hypothesis. We consider the parameters defined in §5.3.1.

5.4.1 The case n odd

Let n “ 2m` 1. We consider the entire function

Knpzq “ p´1qm log2 T Φp2π log2 T zq,

which has Fourier transform

xKnpξq “
p´1qpn´1q{2

?
2π

Φ

ˆ

ξ

log2 T

˙

! 1. (5.4.1)

Firstly we need to estimate the following integral

ż 8

´8

ˆ
ż 8

´8

Snpσ, t` uqKnpuqdu

˙

|Rptq|2Φ

ˆ

t

T

˙

dt. (5.4.2)

This follows by the same computations as in [9, Section 5]. We will divide (5.4.2) into 3

integrals.

1. First integral : Using (5.2.1), (5.2.5) and Fubini’s theorem we get

ż Tβ

´Tβ

ż 8

´8

|Snpσ, t` uqKnpuq|du dt

“

ż Tβ

´Tβ

ż

|u|ďTβ
|Snpσ, t` uqKnpuq|du dt`

ż Tβ

´Tβ

ż

|u|ąTβ
|Snpσ, t` uqKnpuq|du dt

!n

ż Tβ

´Tβ

ż 2Tβ

´2Tβ
|Snpσ, uqKnpu´ tq|du dt`

ż Tβ

´Tβ

ż

|u|ąTβ
logp2|u| ` 2q|Knpuq|du dt

!n

ż 2Tβ

´2Tβ
|Snpσ, uq| du` T β !n T

β log T.

Hence, by Proposition 5.13 we obtain

ż Tβ

´Tβ

ˆ
ż 8

´8

|Snpσ, t` uqKnpuq|du

˙

|Rptq|2Φ

ˆ

t

T

˙

dt !n T
β log T Rp0q2

!n T
β`κ log T

ÿ

lPM
fplq2.

(5.4.3)
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2. Second integral : Using the fast decay of Φptq, (5.2.1) and Proposition 5.13, it follows that

ż

|t|ąT log T

ˆ
ż 8

´8

|Snpσ, t` uqKnpuq|du

˙

|Rptq|2Φ

ˆ

t

T

˙

dt

! T κe´plog T q2{4

˜

ż

|t|ąT log T

ż 8

´8

|Snpσ, t` uqKnpuq|duΦ

ˆ

t

2T

˙

dt

¸

ÿ

lPM
fplq2 (5.4.4)

“ op1q
ÿ

lPM
fplq2.

3. Third integral :

ż

Tβď|t|ďT log T

ˆ
ż 8

´8

Snpσ, t` uqKnpuq du

˙

|Rptq|2Φ

ˆ

t

T

˙

dt

“

ż

Tβď|t|ďT log T

ˆ
ż

Tβ

2
ď|t`u|ď2T log T

Snpσ, t` uqKnpuqdu

˙

|Rptq|2Φ

ˆ

t

T

˙

dt (5.4.5)

`

ż

Tβď|t|ďT log T

ˆ
ż

t|u`t|ăTβ

2
uYt|u`t|ą2T log T u

Snpσ, t` uqKnpuqdu

˙

|Rptq|2Φ

ˆ

t

T

˙

dt.

Now using (5.2.1) and Lemma 5.14, the last integral can be bounded by

ż

Tβď|t|ďT log T

ż

t|u`t|ăTβ

2
uYt|u`t|ą2T log T u

|Snpσ, t` uqKnpuq|du |Rptq|
2Φ

ˆ

t

T

˙

dt

!

ż

Tβď|t|ďT log T

ż

t|u|ăTβ

2
uYt|u|ą2T log T u

|Snpσ, uqKnpu´ tq|du |Rptq|
2Φ

ˆ

t

T

˙

dt

ď

ż

Tβď|t|ďT log T

ż

t|u|ăTβ

2
uYt|u|ą2T log T u

ˇ

ˇ

ˇ
Snpσ, uqKn

´u

2

¯ˇ

ˇ

ˇ
du |Rptq|2Φ

ˆ

t

T

˙

dt

!n

ż

Tβď|t|ďT log T
|Rptq|2Φ

ˆ

t

T

˙

dt ! T
ÿ

lPM
fplq2.

(5.4.6)

Inserting (5.4.6) in (5.4.5) we obtain that

ż

Tβď|t|ďT log T

ˆ
ż 8

´8

Snpσ, t` uqKnpuq du

˙

|Rptq|2Φ

ˆ

t

T

˙

dt

“

ż

Tβď|t|ďT log T

˜

ż

Tβ

2
ď|t`u|ď2T log T

Snpσ, t` uqKnpuqdu

¸

|Rptq|2Φ

ˆ

t

T

˙

dt (5.4.7)

`OnpT q
ÿ

lPM
fplq2.

Therefore, combining (5.4.3), (5.4.4) and (5.4.7) we have that the integral in (5.4.2) can be

written as

ż 8

´8

ˆ
ż 8

´8

Snpσ, t` uqKnpuq du

˙

|Rptq|2Φ

ˆ

t

T

˙

dt`OnpT q
ÿ

lPM
fplq2

“

ż

Tβď|t|ďT log T

˜

ż

Tβ

2
ď|t`u|ď2T log T

Snpσ, t` uqKnpuq du

¸

|Rptq|2Φ

ˆ

t

T

˙

dt.

(5.4.8)
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Final analysis: Finally, recalling that n “ 2m` 1 we consider two cases:

Case 1: m even. In this case note that Knpuq ě 0 for all u P R. Then by Lemma 5.14 and

the fact that Snpσ, tq is an even function we obtain in (5.4.8)

ż 8

´8

ˆ
ż 8

´8

Snpσ, t` uqKnpuq du

˙

|Rptq|2Φ

ˆ

t

T

˙

dt`OnpT q
ÿ

lPM
fplq2

ď b T

˜

max
Tβ

2
ďtď2T log T

Snpσ, tq

¸

ÿ

lPM
fplq2,

(5.4.9)

for some constant b ą 0. We define

Gnptq “
8
ÿ

m“2

Λpmq

πmσ`itplogmqn`1
xKn

ˆ

logm

2π

˙

. (5.4.10)

By Proposition 5.9 and (5.4.1) observe that

ż 8

´8

Snpσ, t` uqKnpuq du “ ReGnptq `On
`

V1{2ptq ` 1
˘

,

for t ‰ 0. Therefore, the integral on the left-hand side of (5.4.9) takes the form

ż 8

´8

ˆ
ż 8

´8

Snpσ, t` uqKnpuqdu

˙

|Rptq|2Φ

ˆ

t

T

˙

dt

“ Re

ż 8

´8

Gnptq|Rptq|
2Φ

ˆ

t

T

˙

dt`On

ˆ
ż 8

´8

`

V1{2ptq ` 1
˘

|Rptq|2Φ

ˆ

t

T

˙

dt

˙

.

(5.4.11)

Using Proposition 5.13, Lemma 5.14 and the definition of V1{2ptq we get

ż 8

´8

`

V1{2ptq ` 1
˘

|Rptq|2Φ

ˆ

t

T

˙

dt ! T
ÿ

lPM
fplq2. (5.4.12)

Therefore using (5.4.11) and (5.4.12) we have

b T

˜

max
Tβ

2
ďtď2T log T

Snpσ, tq

¸

ÿ

lPM
fplq2 ě Re

ż 8

´8

Gnptq|Rptq|
2Φ

ˆ

t

T

˙

dt

`OnpT q
ÿ

lPM
fplq2.

(5.4.13)

Now using Lemma 5.15 (note that xKnptq is a positive real function) with

am “ xKn

ˆ

logm

2π

˙

1

πplogmqn
,

for all m ě 2 we obtain

Re

ż 8

´8

Gnptq|Rptq|
2Φ

ˆ

t

T

˙

dt
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ě c T
plog T q1´σplog3 T q

σ

plog2 T q
σ

ˆ

min
p PP

xKn

ˆ

log p

2π

˙

1

plog pqn

˙

ÿ

lPM
fplq2, (5.4.14)

for some constant c ą 0. Note that (5.3.2) and (5.4.1) imply

min
e logN log2 Năpďexp

`

plog2Nq
1{8
˘

logN log2 N

xKn

ˆ

log p

2π

˙

1

plog pqn
"

1

plog2 T q
n
.

Inserting this in (5.4.14), we obtain in (5.4.13) that (after simplification)

max
Tβ

2
ďtď2T log T

Snpσ, tq ě cn
plog T q1´σplog3 T q

σ

plog2 T q
σ`n

`Onp1q,

for some constant cn ą 0. After a trivial adjustment, changing T to T {2 log T and making

β slightly smaller, we obtain the restriction T β ď t ď T .

Case 2: m odd. In this case note that Knpuq ď 0 for all u P R. Similar to (5.4.9), using

the fact that Snptq is an even function we find that

ż 8

´8

ˆ
ż 8

´8

Snpσ, t` uqKnpuq du

˙

|Rptq|2Φ

ˆ

t

T

˙

dt`OnpT q
ÿ

lPM
fplq2

ď b T

˜

max
Tβ

2
ďtď2T log T

|Snpσ, tq|

¸

ÿ

lPM
fplq2,

(5.4.15)

for some constant b ą 0. Using the function Gn defined in (5.4.10), by Proposition 5.9 and

(5.4.1) we get

ż 8

´8

Snpσ, t` uqKnpuqdu “ ´ReGnptq `On
`

V1{2ptq ` 1
˘

.

A similar analysis as in the previous case shows that, by Lemma 5.15 (note that ´xKnptq is

a positive real function)

Re

ż 8

´8

´Gnptq|Rptq|
2Φ

ˆ

t

T

˙

dt

ě c T
plog T q1´σplog3 T q

σ

plog2 T q
σ

ˆ

min
p PP

´xKn

ˆ

log p

2π

˙

1

plog pqn

˙

ÿ

lPM
fplq2,

(5.4.16)

for some constant c ą 0. By (5.3.2) and (5.4.1) we have

min
e logN log2Năpďexp

`

plog2 Nq
1{8
˘

logN log2N

´xKn

ˆ

log p

2π

˙

1

plog pqn
"

1

plog2 T q
n
.

Inserting this in (5.4.16) we obtain in (5.4.15) that (after simplification)

max
Tβ

2
ďtď2T log T

|Snpσ, tq| ě cn
plog T q1´σplog3 T q

σ

plog2 T q
σ`n

`Onp1q,
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for some constant cn ą 0. After the same trivial adjustment of T and β as in the preceding

case we obtain the desired result.

5.4.2 The case n even

We consider the entire function

Knpzq “ p´1qn{2`1plog2 T q
2 zΦp2π log2 T zq,

which has Fourier transform

xKnpξq “
p´1qn{2 i

p2πq
3
2 plog2 T q

ξΦ

ˆ

ξ

log2 T

˙

! 1. (5.4.17)

The analysis in this case is similar to the case n “ 2m` 1 with m odd. Using the fact that

Snptq is an odd function we obtain that (5.4.15) holds. Using the function Gn defined in

(5.4.10), by Proposition 5.9 and (5.4.17) note that

ż 8

´8

Snpσ, t` uqKnpuq du “ p´1qn{2ImGnptq `On
`

V1{2ptq ` 1
˘

.

This implies that in (5.4.15) we obtain

b T

˜

max
Tβ

2
ďtď2T log T

ˇ

ˇSnpσ, tq
ˇ

ˇ

¸

ÿ

lPM
fplq2 ě Re

ż 8

´8

p´1qn{2`1 iGnptq|Rptq|
2Φ

ˆ

t

T

˙

dt

`OnpT q
ÿ

lPM
fplq2,

for some constant b ą 0. Now, using Lemma 5.15 (note that ip´1qn{2`1
xKnptq is a positive

real function for t ě 0) it follows that

T

˜

max
Tβ

2
ďtď2T log T

ˇ

ˇSnpσ, tq
ˇ

ˇ

¸

ÿ

lPM
fplq2

ě c T
plog T q1´σplog3 T q

σ

plog2 T q
σ

ˆ

min
pPP

Im

"

p´1qn{2 xKn

ˆ

log p

2π

˙

1

plog pqn

*˙

ÿ

lPM
fplq2,

(5.4.18)

for some constant c ą 0. By (5.3.2) and (5.4.17) we have

min
e logN log2 Năpďexp

`

plog2 Nq
1{8
˘

logN log2 N

Im

"

p´1qn{2 xKn

ˆ

log p

2π

˙

1

plog pqn

*

"
1

plog2 T q
n
.

Inserting this in (5.4.18) and doing the same procedure as in the previous cases we obtain

the desired result.
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Chapter 6

Zeros of the Riemann zeta-function

and semidefinite programming

This chapter is comprised of the paper [A5]. We improve the asymptotic bounds for

several quantities related to the distribution of the zeros of the Riemann zeta-function (and

other functions), under Montgomery’s pair correlation approach [72]. The main idea is to

replace the usual bandlimited auxiliary functions by the class of functions used in the linear

programming bounds developed by Cohn and Elkies [32] for the sphere packing problem.

It allows one to relate the considered objects to certain convex optimization problems that

can be solved numerically via semidefinite programming.

6.1 The pair correlation of the zeros of the Riemann

zeta-function

In 1973, Montgomery [72] made a major contribution to the study of the distribution

of the zeros on the critical line: the pair correlation conjecture of the zeros of the Riemann

zeta-function. We revisit Montgomery’s work in light of the recent techniques in sphere

packing, to improve some quantities related to the zeros of the Riemann zeta-function.

The Riemann-von Mangoldt formula (2.2.1), in its weaker form, states that

NpT q “ p1` op1qq
T

2π
log T. (6.1.1)

Let

N˚pT q :“
ÿ

0ăγďT

mρ,

where the sum is over the non-trivial zeros of ζpsq counting multiplicities1 and mρ is the

multiplicity of ρ. It is clear that NpT q ď N˚pT q. On the other hand, in addition to RH, it

1We recall that in the sums related to zeros the summands should be repeated according to the multi-
plicity of the zero. Therefore, the function N˚pT q can also be written as

ř

0ăγďT m
2
ρ, where the sum runs

over the distinct zeros of ζpsq.
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is also conjectured that all zeros of ζpsq are simple, and therefore it is conjectured2 that

N˚pT q „ NpT q. (6.1.2)

One line of research to understand and give evidence for this conjecture is to produce bounds

of the form

N˚pT q ď
`

C ` op1q
˘

NpT q, (6.1.3)

with C ą 0 as small as possible, and T Ñ 8. Under RH, Montgomery [72] was the first to

show the constant C “ 1.3333.... This result was later improved to C “ 1.3275 by Cheer

and Goldston [30]. Assuming GRH, Goldston, Gonek, Özlük and Snyder [47] improved it

to C “ 1.3262.

These results have an important application to estimating the quantity of simple zeros

of ζpsq. Let

NspT q :“
ÿ

0ăγďT
mρ“1

1. (6.1.4)

The strong relation between N˚pT q and NspT q is due by

NspT q ě
ÿ

0ăγďT

p2´mρq “ 2NpT q ´N˚pT q. (6.1.5)

Under the pair correlation approach the best previous result known is due by Cheer and

Goldston [30] showing that at least 67.27% of the zeros are simple. Assuming GRH, Gold-

ston, Gonek, Özlük and Snyder [47] showed that at least 67.38% of the zeros are simple.

However, by a different technique, still assuming RH, Bui and Heath-Brown [12] improved

the result to 70.37%, which currently is the best.

In order to study the distribution of the spacing between consecutive zeros of ζpsq,

Montgomery [72] also defined the pair correlation function

NpT, βq :“
ÿ

0ăγ,γ1ďT

0ăγ1´γď 2πβ
log T

1 (6.1.6)

and conjectured that

NpT, βq „ NpT q

ż β

0

"

1´

ˆ

sinπx

πx

˙2*

dx.

Note that by (6.1.1) the average gap between zeros is 2π
log T , hence NpT, βq is counting zeros

not greater than β times the average gap. To support this conjecture, one wants to produce

bounds of the form

NpT, βq " NpT q, (6.1.7)

2It can be seen in the notes of D. A. Goldston [45].
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with β ą 0 as small as possible, and T Ñ 8. Montgomery [72] showed, under RH and

(6.1.2) that β can be take as 0.68..., and in [47] it is pointed out that it is not difficult to

modify Montgomery’s argument to derive the sharper constant β “ 0.6695. This result was

improved by Goldston, Gonek, Özlük and Snyder [47] with constant β “ 0.6072. Recently, it

was improved to the constant β “ 0.6068... by Carneiro, Chandee, Littmann and Milinovich

[15]. Assuming GRH and (6.1.2), Goldston, Gonek, Özlük and Snyder showed the constant

0.5781....

The direct application of these results is to estimate how small the gaps between con-

secutive zeros can be related to the total average gap. Ordering the imaginary parts of the

zeros of ζpsq in the upper half plane 0 ă γ1 ď γ2 ď γ3 ď ¨ ¨ ¨, it is clear that

lim inf
nÑ8

pγn`1 ´ γnq
log γn

2π
ď β. (6.1.8)

Under the pair correlation approach, using the above mentioned constants, we can obtain

bounds in (6.1.8). By a different technique, assuming RH, the best result known in (6.1.8)

is due to Preobrazhenskǐi [78], showing the constant 0.5154.

6.1.1 Main results I

Our main goal here is to improve the previous results in (6.1.3) and (6.1.7).

Theorem 6.1. Assume the Riemann hypothesis. Then, as T Ñ8

N˚pT q ď p1.3208` op1qqNpT q.

Assume the generalized Riemann hypothesis. Then, as T Ñ8

N˚pT q ď p1.3155` op1qqNpT q.

Using the relation (6.1.5) we obtain the following corollary.

Corollary 6.2. Assume the Riemann hypothesis. Then, as T Ñ8

NspT q ě p0.6792` op1qqNpT q.

Assume the generalized Riemann hypothesis. Then, as T Ñ8

NspT q ě p0.6845` op1qqNpT q.

Using the approach of pair correlation, Corollary 6.2 is the best result (up to date) on

the percentage of simple zeros of ζpsq, but as mentioned previously Bui and Heath-Brown

[12] obtained the constant 0.7037 using a different technique. However, we can use Theorem
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6.1 and the result of Bui and Heath-Brown to improve the proportion of distinct zeros. Let

NdpT q :“
ÿ

0ăγďT

1

mρ
, (6.1.9)

be the number of distinct zeros of ζpsq with 0 ă γ ď T . Using the inequality

2NspT q ď
ÿ

0ăγďT

pmρ ´ 2qpmρ ´ 3q

mρ
“ N˚pT q ´ 5NpT q ` 6NdpT q.

in conjunction with the estimate

NspT q ě p0.7037` op1qqNpT q

and Theorem 6.1, we deduce the following corollary.

Corollary 6.3. Assume the Riemann hypothesis. Then, as T Ñ8

NdpT q ě p0.8477` op1qqNpT q.

Assume the generalized Riemann hypothesis. Then, as T Ñ8

NdpT q ě p0.8486` op1qqNpT q.

Using the pair correlation approach, the best previous result known is due to Farmer,

Gonek and Lee [39] with constant 0.8051. By a different technique, assuming RH, Bui and

Heath-Brown [12] improved the constant to 0.8466. To the best of our knowledge, our new

bounds are the current best.

We also obtain improved results for Montgomery’s pair correlation function.

Theorem 6.4. Assume the Riemann hypothesis and (6.1.2). Then, for T sufficiently large

NpT, 0.6039q " NpT q.

Assume the generalized Riemann hypothesis and (6.1.2). Then, for T sufficiently large

NpT, 0.5769q " NpT q.

As a simple consequence we obtain the best result in (6.1.8), under the pair correlation

approach.

Corollary 6.5. Assume the Riemann hypothesis. Then

lim inf
nÑ8

pγn`1 ´ γnq
log γn`1

2π
ď 0.6039.
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Assume the generalized Riemann hypothesis. Then

lim inf
nÑ8

pγn`1 ´ γnq
log γn`1

2π
ď 0.5769.

6.2 The pair correlation of the zeros of Dirichlet L-functions

We use the framework established by Chandee, Lee, Liu, and Radziwi l l [28] to improve

a result related to the simplicity of the zeros of the primitive Dirichlet L-functions.

Let Φ be a real-valued smooth function supported in the interval ra, bs with 0 ă a ă b ă 8.

Define its Mellin transform by

MΦpsq “

ż 8

0
Φpxqxs´1 dx.

For a character χ mod q, let Lps, χq be its associated Dirichlet L-function. Under GRH, all

non-trivial zeros of Lps, χq lie on the critical line Re s “ 1{2. Let

NΦpQq :“
ÿ

Qďqď2Q

W pq{Qq

ϕpqq

ÿ

χ pmod qq
primitive

ÿ

γχ

ˇ

ˇMΦpiγχq
ˇ

ˇ

2
,

where W is a non-negative smooth function supported in p1, 2q, and where the last sum is

over all non-trivial zeros 1
2 ` iγχ of the Dirichlet L-function Lps, χq. In [28, Lemma 2.1] it

is shown that

NΦpQq „
A

2π
Q logQ

ż 8

´8

ˇ

ˇMΦpixq
ˇ

ˇ

2
dx,

where

A “MW p1q
ź

p prime

ˆ

1´
1

p2
´

1

p3

˙

.

Let

NΦ,spQq “
ÿ

Qďqď2Q

W pq{Qq

ϕpqq

ÿ

χ pmod qq
primitive

ÿ

γχ
simple

ˇ

ˇMΦpiγχq
ˇ

ˇ

2
.

In addition, we require that Φpxq and MΦpixq are non-negative functions. We note that

we can also further relax the conditions on Φ so to include the function given by MΦpixq “

psinx{xq2, as was established in [28] and [84].

We want to establish bounds in the form

NΦ,spQq ě
`

C ` op1q
˘

NΦpQq, (6.2.1)

with C ą 0 as small as possible, and QÑ 8. In some sense, (6.2.1) measures (in average)

the proportion of simple zeros among all primitive Dirichlet L-functions. Chandee, Lee, Liu,

and Radziwi l l [28] showed the constant C “ 0.9166..., assuming GRH. Sono [84] improved

the constant to C “ 0.9322..., using similar ideas of the work of Carneiro, Chandee, Littmann
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and Milinovich [15] for the case of the Riemann zeta-function.

6.2.1 Main result II

The following theorem improves the results above mentioned.

Theorem 6.6. Assume the generalized Riemann hypothesis. Then, as QÑ8

NΦ,spQq ě p0.9350` op1qqNΦpQq.

Theorem 6.6 shows that at least 93.50% of low-lying zeros of primitive Dirichlet L-

functions are simple in a proper sense, under the assumption of the generalized Riemann

hypothesis.

6.3 The pair correlation of the zeros of the derivative of the

Riemann ξ-function

We can extend our analysis to study the zeros of ξ1psq, using the approach of pair

correlation due by Farmer, Gonek and Lee [39]. We recall the definition of the Riemann

ξ-function

ξpsq “
1

2
sps´ 1qπ´

s
2 Γ

ˆ

s

2

˙

ζpsq.

It is known that ξ1psq has only zeros in the critical strip 0 ă Re s ă 1 and that RH implies

that all its zeros satisfy Re s “ 1
2 . Let N1pT q count the number of zeros ρ1 “ β1 ` iγ1 of

ξ1psq (with multiplicity) such that 0 ă γ1 ď T . It is also known that

N1pT q “ p1` op1qq
T

2π
log T.

We define the function

N˚1 pT q :“
ÿ

0ăγ1ďT

mρ1 ,

where mρ1 is the multiplicity of the zero ρ1. Similarly to the case of the Riemann zeta-

function, we want to establish bounds in the form

N˚1 pT q ď
`

C ` op1q
˘

N1pT q,

with C ą 0 as small as possible, and T Ñ8. The previous constant known, assuming RH,

is due by Farmer, Gonek and Lee [39], showing the constant C “ 1.1417. Now, let N1,spT q

be the number of simple zeros of ξ1psq (similar as (6.1.4)). Using the relation

N1,spT q ě 2N1pT q ´N
˚
1 pT q,
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we can obtain bounds to the percentage of the simple zeros of ξ1psq. For instance, the result

of Farmer, Gonek and Lee [39] implies that more than 85.83% of the zeros of ξ1psq are simple.

6.3.1 Main result III

We improve the previous result on the percentage of simple zeros of ξ1psq.

Theorem 6.7. Assume the Riemann hypothesis. Then, as T Ñ8

N˚1 pT q ď p1.1175` op1qqN1pT q.

In particular, assuming the Riemann hypothesis we have, as T Ñ8

N1,spT q ě p0.8825` op1qqN1pT q.

Also, let N1,dpT q be the number of distinct zeros of ξ1psq (similar as (6.1.9)). It is clear

that the relation

N1,dpT q ě
3

2
N1pT q ´

1

2
N˚1 pT q,

can be derived the same way as for ζpsq. Then, we have the following corollary.

Corollary 6.8. Assume the Riemann hypothesis. Then, as T Ñ8

N1,dpT q ě p0.9412` op1qqN1pT q.

6.4 Strategy oultine

These two problems have been widely studied with several improvements being made

over the years. One of the approaches is to use some suitable explicit formula (relating

sums with integrals) with an auxiliary function f in some class A and produce an inequal-

ity relating the quantity we are interested to bound with some functional Qpfq over A.

Minimizing (or maximizing) the functional over the class A would then produce the best-

bound one can possibly get with that specific approach. Nowadays, this idea is a standard

technique in analytic number theory and has been used in the first chapters of this thesis.

Other applications can be see in the following references: Large sieve inequalities [51, 53];

Erdös-Turán inequalities [27, 89]; Hilbert-type inequalities [24, 25, 27, 49, 51, 89]; Taube-

rian theorems [51]; Bounds in the theory of the Riemann zeta-function and L-functions

[14, 15, 16, 17, 18, 19, 20, 29, 31, 44, 46]; Prime gaps [26].

From our point of view, our main contribution connects here. So far the only class A
used for problems (6.1.3) and (6.1.7) was some Paley-Wiener space of bandlimited approxi-

mations. We relax the bandlimited condition by requiring only certain sign conditions on the

auxiliary function that match exactly with the very same conditions required by the linear

programming bounds for the packing problem (see Section 6.5 for a detailed explanation).
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This relation is what ultimately inspired and allowed us to perform numerical computa-

tions to find good test functions for the functionals we derive in Section 6.5. Furthermore,

as far as we know, it is the first time this method is used in the theory of the Riemann

zeta-function.

The strategy can be broadly divided into the following two main steps:

Step 1: Derivation of the optimization problems.

The general strategy to study problems (6.1.3) and (6.1.7) is based on Montgomery’s

function

F pα, T q “
1

NpT q

ÿ

0ăγ,γ1ďT

T iαpγ´γ1qwpγ ´ γ1q, (6.4.1)

where α P R, T ě 2 and the sum is over pairs of ordinates of zeros (with multiplicity) of

ζpsq and wpuq “ 4
4`u2 . We use Fourier inversion to obtain

ÿ

0ăγ,γ1ďT

g

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q “ NpT q

ż 8

´8

pgpαqF pα, T qdα, (6.4.2)

for suitable functions g, and use some known asymptotic estimate for F pα, T q as T Ñ 8

(which is proven only under RH or GRH). The main goal here is to note that the inequalities

that appear in [28, 30, 39, 47, 72, 84] allows the use of an especial space of functions,

denoted by ALP . In particular, these functions are eventually nonpositive and their Fourier

transforms are positives. After a series of inequalities, we produce a minimization problem

over ALP for some functional Z.

Step 2: Implementation and numerical issues.

We then approach the problem numerically, using the class of functions ALP used for the

sphere packing problem in [32] and sum-of-squares/semidefinite programming techniques to

optimize over these functions, as was done in [62] for the binary sphere packing problem.

For the code to generate the semidefinite programs and to perform the post processing we

use Julia [4], Nemo [40] and Arb [57].

Although we will only use this framework to study the case of the Riemann zeta-function,

ξ1psq and a certain average of primitive Dirichlet L-functions, the same basic strategy can

be, in principle, carried out for other functions where we have a pair correlation approach.

6.5 Derivation of the optimization problems

Let ALP be the class of even continuous functions f P L1pRq satisfying the following

conditions:

1. pfp0q “ fp0q “ 1;
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2. pf ě 0;

3. f is eventually nonpositive.

By eventually nonpositive we mean that fpxq ď 0, for |x| sufficiently large. We then define

the last sign change of f by

rpfq “ inf
 

r ą 0 : fpxq ď 0 for |x| ě r
(

.

It is easy to show that if f P ALP , then pf P L1pRq.
A remarkable breakthrough in the sphere problem was achieved by Cohn and Elkies in

[32], where they showed that if ∆pRdq is the highest sphere packing density in Rd then

∆pRdq ď Qpfq

for any f P ALP pRdq (this is the analogous class in higher dimensions defined for radial

functions f), where

Qpfq “ πd{2

pd{2q!2d
rpfqd.

With this approach they generated numerical upper bounds, called linear programming

bounds, for the packing density for dimensions up to 36 (nowadays it goes much higher)

that improved every single upper bound known at the time and still are the current best.

These upper bounds in dimensions 8 and 24 revealed to be extremely close to the lower

bounds given by the E8 root lattice and the Λ24 Leech lattice, suggesting that in these

special dimensions the linear programming approach could exactly act as the dual problem.

This is what inspired Viazovska [90] and Cohn, Kumar, Miller, Radchenko and Viazovska

[34], to follow their program and solve the sphere packing problem in dimensions 8 and 24,

respectively. What is interesting and surprising to us is that the same space ALP can be

used (but with a functional different than Qpfq) to produce numerical bounds in analytic

number theory.

6.5.1 Bounding N˚pT q and NpT, βq

Ultimately, the functionals we need to define depend on the asymptotic behavior of

F pα, T q. To analyze the function N˚pT q we define the functionals

Zpfq “ rpfq `
2

rpfq

ż rpfq

0
fpxqx dx

and

rZpfq “ rpfq `
2

rpfq

ż rpfq

0
fpxqx dx` 3

ż 3rpfq{2

rpfq
fpxq dx´

2

rpfq

ż 3rpfq{2

rpfq
fpxqx dx.
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Theorem 6.9. Let f P ALP . Assuming RH we have, as T Ñ8

N˚pT q ď pZpfq ` op1qqNpT q.

Assuming GRH, for every fixed small δ ą 0 we have, as T Ñ8

N˚pT q ď p rZpfq `Opδq ` op1qqNpT q.

Proof. We start assuming only RH. Refining the original work of Montgomery [72], Goldston

and Montgomery [48, Lemma 8] stated for the function F pα, T q defined in (6.4.1), that

F pα, T q “
`

T´2|α| log T ` |α|
˘

p1` op1qq, (6.5.1)

uniformly for |α| ď 1. Let f P ALP and let gpxq “ pfpx{rpfqq{rpfq. We can then use the

explicit formula (6.4.2) in conjunction with the asymptotic formula above to obtain

ÿ

0ăγ,γ1ďT

g

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q “ NpT q

„

pgp0q `

ż 1

´1
pgpαq|α| dα

`

ż

|α|ą1
pgpαqF pα, T q dα` op1q



,

where the op1q above is justified since pg is continuous and T´2|α| log T Ñ δ0pαq as T Ñ 8

(in the distributional sense). Moreover, since F pα, T q is non-negative and pgpαq ď 0 for

|α| ě 1 we deduce that

ÿ

0ăγ,γ1ďT

g

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q ď NpT q

„

pgp0q ` 2

ż 1

0
pgpαqα dα` op1q



“ NpT q

„

Zpfq
rpfq

` op1q



.

On the other hand, clearly we have

ÿ

0ăγ,γ1ďT

g

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q ě gp0q
ÿ

0ăγďT

mρ “
N˚pT q

rpfq
.

Combining these results we show the first inequality in the theorem. Assume now GRH. It

is then shown in [47] that for any fixed and sufficiently small δ ą 0 we have

F pα, T q ě 3
2 ´ |α| ´ op1q, (6.5.2)

uniformly for 1 ď |α| ď 3
2 ´ δ, as T Ñ 8. Using this estimate and the fact that pgpαq ď 0

for |α| ě 1 we obtain

ÿ

0ăγ,γ1ďT

pg

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q ď NpT q

«

pgp0q ` 2

ż 3{2´δ

1
pgpαq

`

3
2 ´ α

˘

dα` op1q

ff
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“ NpT q

«

rZpfq
rpfq

` op1q `Opδq

ff

.

Arguing as before we finish the proof.

To analyze NpT, βq we define the function

Ppfq “ inf
 

λ ą 0 : pf pλq ą 0
(

,

where

pf pλq “ ´1`
λ

rpfq
`

2rpfq

λ

ż λ{rpfq

0

pfpxqx dx,

and the function

rPpfq “ inf
 

λ ą 0 : rpf pλq ą 0
(

,

where

rpf pλq “ ´1`
λ

rpfq
`

2rpfq

λ

ż λ{rpfq

0

pfpxqx dx` 3

ż 3λ{p2rpfqq

λ{rpfq

pfpxq dx

´
2rpfq

λ

ż 3λ{p2rpfqq

λ{rpfq

pfpxqx dx.

Note that these functions are well defined since pf and rpf are of class C1pRq that assume

´1 at λ “ 0, and using the fact that pf P L1pRq one can show

lim
λÑ8

pf pλq

λ
“ lim

λÑ8

rpf pλq

λ
“

1

rpfq
ą 0.

Theorem 6.10. Let f P ALP and ε ą 0. Assuming RH and (6.1.2) we have for T suffi-

ciently large

NpT,Ppfq ` εq " NpT q.

Assuming GRH we have for T sufficiently large

NpT, rPpfq ` εq " NpT q.

Proof. In the following we only exhibit the proof assuming RH since under GRH the proof

is very similar, and the only extra information needed is in (6.5.2). Let f P ALP and λ ą 0.

Applying the explicit formula (6.4.2) for gpxq “ fprpfqx{λq in conjunction with (6.5.1) we

obtain

ÿ

0ăγ,γ1ďT

g

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q “ NpT q

ż 8

´8

pgpαqF pα, T qdα
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ě NpT q

„

pgp0q ` 2

ż 1

0
pgpαqα dα` op1q



“ NpT q r1` pf pλq ` op1qs .

Since pf ě 0, we have }f}8 “ fp0q “ 1. Recall now the pair correlation function NpT, βq

defined in (6.1.6). We have

ÿ

0ăγ,γ1ďT

g

ˆ

pγ ´ γ1q
log T

2π

˙

wpγ ´ γ1q

“ N˚pT q ` 2
ÿ

0ăγ,γ1ďT
0ăγ´γ1

f

ˆ

pγ ´ γ1q
rpfq log T

2πβ

˙

wpγ ´ γ1q

ď N˚pT q ` 2
ÿ

0ăγ,γ1ďT

0ăγ´γ1ď 2πβ
log T

f

ˆ

pγ ´ γ1q
rpfq log T

2πβ

˙

wpγ ´ γ1q

ď N˚pT q ` 2NpT, βq

“ p1` op1qqNpT q ` 2NpT, βq,

where in the last step we have used (6.1.2). Then, we obtain

NpT, βq

NpT q
ě
pf pλq

2
` op1q.

Noting that NpT, βq increases with β, we can then choose β arbitrarily close to Ppfq and

obtain the desired result.

6.5.2 Bounding NΦ,spQq

Define the following functional over ALP :

Lpfq “ rpfq

2
`

4

rpfq

ż rpfq{2

0
fpxqx dx` 2

ż rpfq

rpfq{2
fpxq dx.

We have the following theorem.

Theorem 6.11. Let f P ALP . Assuming GRH, for every fixed small δ ą 0 we have, as

QÑ8

NΦ,spQq ě p2´ Lpfq `Opδq ` op1qqNΦpQq.

Proof. For Q ą 1 and α P R, we define the pair correlation function FΦ by

FΦpQ
α,W q “

1

NΦpQq

ÿ

Qďqď2Q

W pq{Qq

ϕpqq

ÿ

χ pmod qq
primitive

ˇ

ˇ

ˇ

ˇ

ÿ

γχ

MΦpiγχqQ
iαγχ

ˇ

ˇ

ˇ

ˇ

2

.

120



Using the asymptotic large sieve, Chandee, Lee, Liu and Radziwi l l [28] showed the following

asymptotic formula under GRH

FΦpQ
α,W q

“ p1` op1qq

„

1´ p1´ |α|q` ` Φ
`

Q´|α|
˘2

logQ

ˆ

1

2π

ż 8

´8

ˇ

ˇMΦpitq
ˇ

ˇ

2
dt

˙´1

(6.5.3)

`O
´

ΦpQ´|α|q log1{2Q
¯

,

which holds uniformly for |α| ď 2´ δ, as QÑ8, for any fixed and sufficiently small δ ą 0.

Let

N˚ΦpQq :“
ÿ

Qďqď2Q

W pq{Qq

ϕpqq

ÿ

χ pmod qq
primitive

ÿ

γχ

mρχ

ˇ

ˇMΦpiγχq
ˇ

ˇ

2
,

where mρχ denote the multiplicity of the nontrivial zero ρχ “
1
2 ` iγχ of Lps, χq. Since

ÿ

γχ
simple

ˇ

ˇMΦpiγχq
ˇ

ˇ

2
ě

ÿ

γχ

p2´mρχq
ˇ

ˇMΦpiγχq
ˇ

ˇ

2

we obtain

NΦ,spQq ě 2NΦpQq ´N
˚
ΦpQq. (6.5.4)

For any g P L1pRq with pg P L1pRq we have the following explicit formula (Fourier inversion)

ÿ

Qďqď2Q

W pq{Qq

ϕpqq

ÿ

χ pmod qq
primitive

ÿ

γχ,γ1χ

MΦpiγχqMΦpiγ1χq pg

ˆ

pγχ ´ γ
1
χq logQ

2π

˙

“ NΦpQq

ż 8

´8

gpαqFΦpQ
α,W q dα.

Letting f P ALP and gpxq “ fprpfqx{p2 ´ δqq, for any primitive character χ pmod qq we

obtain

ÿ

γχ,γ1χ

MΦpiγχqMΦpiγ1χq pg

ˆ

pγχ ´ γ
1
χq logQ

2π

˙

“
ÿ

γχ

mρχ

ˇ

ˇMΦpiγχq
ˇ

ˇ

2
pgp0q `

ÿ

γχ‰γ1χ

MΦpiγχqMΦpiγ1χq pg

ˆ

pγχ ´ γ
1
χq logQ

2π

˙

ě
2´ δ

rpfq

ÿ

γχ

mρχ

ˇ

ˇMΦpiγχq
ˇ

ˇ

2
.
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This implies that

ÿ

Qďqď2Q

W pq{Qq

ϕpqq

ÿ

χ pmod qq
primitive

ÿ

γχ,γ1χ

MΦpiγχqMΦpiγ1χqg

ˆ

pγχ ´ γ
1
χq logQ

2π

˙

ě
2´ δ

rpfq
N˚ΦpQq.

On the other hand, observing that

Φ
`

Q´|α|
˘2

logQ

ˆ

1

2π

ż 8

´8

ˇ

ˇMΦpitq
ˇ

ˇ

2
dt
¯

Ñ δpαq,

as QÑ8 (in the distributional sense) and that

plogQq1{2
ż 2´δ

´p2´δq
gpαqΦpQ´|α|q dα ď 2 log´1{2Q

ż 1

Q´p2´δq
Φptq

dt

t
“ O

`

plogQq´1{2
˘

,

we can use the asymptotic estimate (6.5.3) to obtain

ż 8

´8

gpαqFΦpQ
α,W qdα ď

ż 2´δ

´p2´δq
gpαqFΦpQ

α,W q dα

“ gp0q `

ż 2´δ

´p2´δq
gpαqp1´ p1´ |α|q`q dα`O

`

plogQq´1{2
˘

` op1q

“
2Lpfq
rpfq

`Opδq ` op1q.

We then conclude that

N˚ΦpQq ď NΦpQq pLpfq `Opδq ` op1qq .

Using (6.5.4) we finish the proof.

6.5.3 Bounding N˚
1 pT q

Similarly to the case of the Riemann zeta-function, the functionals that we need to define

depend on the asymptotic behavior of the function F1pα, T q defined by

F1pα, T q “ N1pT q
´1

ÿ

0ăγ1,γ11ďT

T iαpγ1´γ11qwpγ1 ´ γ
1
1q, (6.5.5)

where α P R, T ě 2 and the sum is over pairs of ordinates of zeros (with multiplicity) of

ξ1psq. To analyze N˚1 pT q we define the following functional

Z1pfq “ rpfq `
2

rpfq

ż rpfq

0
x fpxqdx´

8

rpfq2

ż rpfq

0
x2 fpxqdx

`

8
ÿ

k“1

2ck
rpfq2k`1

ż rpfq

0
x2k`1 fpxq dx,
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where ck “ 22k`1 pk´1q!
p2kq! .

Theorem 6.12. Let f P ALP . Assuming RH, for every fixed small δ ą 0 we have

N˚1 pT q ď pZ1pfq `Opδq ` op1qqN1pT q.

Proof. A result similar to (6.5.1) for the function F1pα, T q defined in (6.5.5) is also known

(see [39, Theorem 1.1]), which is the following: for any fixed small δ ą 0 we have

F1pα, T q “ T´2|α| log T ` |α| ´ 4|α|2 `
8
ÿ

k“1

ck|α|
2k`1 ` op1qp1` T´2|α| log T q,

uniformly for |α| ď 1 ´ δ, as T Ñ 8, where ck “ 22k`1 pk´1q!
p2kq! . The proof then follows the

same strategy as the proof for ζpsq and we leave the details to the reader.

6.6 Numerically optimizing the bounds

Going back to the sphere packing problem, since we obviously have ∆pR1q “ 1, this

shows rpfq ě 1 for all f P ALP . The last sign change equals 1 for two (suspiciously)

well-known functions: the hat function and its Fourier transform

Hpxq “ p1´ |x|q` and pHpξq “

ˆ

sinπξ

πξ

˙2

,

and the Selberg’s function with its Fourier transform

Spxq “

ˆ

sinπx

πx

˙2 1

p1´ x2q
and pSpξq “

#

1´ |ξ| ` sinp2πξq
2π if |ξ| ď 1

0 if |ξ| ą 1.

In particular, we can use these two functions to evaluate the functionals derived in Section

6.5 to obtain bounds, but this does not result in the best possible bounds. To obtain better

bounds we use the class of functions used in the linear programming bounds by Cohn and

Elkies [32] for sphere packing. That is, we consider the subspace ALP pdq consisting of the

functions f P ALP of the form

fpxq “ ppxqe´πx
2
, (6.6.1)

where p is an even polynomial of degree 2d.

In [32], optimization over a closely related class of functions is done by specifying the

functions by their real roots and optimizing the root locations. For the sphere packing

problem this works very well, where in R24 it leads to a density upper bound that is sharp

to within a factor 1 ` 10´51 of the optimal configuration [35]. We have also tried this

approach for the optimization problems in this chapter, but this did not work very well

because the optimal functions seem to have very few real roots, which produces a strange

effect in the numerical computations, where the last forced root tends to diverge when you
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increase the degree of the polynomial3. Instead we use sum-of-squares characterizations and

semidefinite programming, as was done in [62] for the binary sphere packing problem.

Semidefinite programming is the optimization of a linear functional over the intersection

of a cone of positive semidefinite matrices (real symmetric matrices with nonnegative eigen-

values) and an affine space. A semidefinite program is often given in block form, which can

be written as

minimize
I
ÿ

i“1

trpXiCiq :
I
ÿ

i“1

trpXiAi,jq “ bj for j P rms,

X1, . . . , XI P Rnˆn positive semidefinite,

where I P N gives the number of blocks, tCiu Ď Rnˆn is the objective, and tAi,ju Ď Rnˆn, b P

Rm give the linear constraints (for notational simplicity we take all blocks to have the same

size). Semidefinite programming is a broad generalization of linear programming (which we

recover by setting n “ 1 in the above formulation), and, as for linear programming, there

exist efficient algorithms for solving them. The reason semidefinite programming comes

into play here, is that we can model polynomial inequality constraints as sum-of-squares

constraints, which in turn can be written as semidefinite constraints; see, e.g., [5].

6.6.1 Proof of Theorems 6.1, 6.6, and 6.7

To obtain the first part of Theorem 6.1 from Theorem 6.9 we need to minimize the

functional Z over the space ALP pdq. We can see this as a bilevel optimization problem,

where we optimize over scalars R ě 1 in the outer problem, and over functions f P ALP pdq

satisfying rpfq “ R in the inner problem. The outer problem is a simple one dimensional

optimization problem for which we use Brent’s method [10]. The inner problem can be writ-

ten as a semidefinite program as we discuss below. The numerical results suggest that the

optimal R goes to 1 as dÑ8 (which is itself intriguing and so far we have no explanation),

but for fixed d we need to optimize R to obtain a good bound.

A polynomial p that is nonnegative on rR,8q can be written as s1pxq ` px ´ Rqs2pxq,

where s1 and s2 are sum-of-squares polynomials with degps1q, degps2pxqq ` 1 ď degppq; see,

e.g., [77]. This shows that functions of the form (6.6.1) that are non-positive on rR,8q can

be written as

fpxq “ ´
`

s1px
2q ` px2 ´R2qs2px

2q
˘

e´πx
2
.

Let vpxq be a vector whose entries form a basis of the univariate polynomials of degree

at most d. The polynomials s1 and s2 are sum-of-squares if and only if they can be written

as sipxq “ vpxqTXivpxq for some positive semidefinite matrices Xi of size d ` 1. That is,

we can parameterize functions of the form (6.6.1) that are non-positive on rR,8q by two

positive semidefinite matrices X1 and X2 of size d` 1.

3It is worth mentioning that, in a related uncertainty problem, Cohn and Gonçalves [33] discovered the
same kind of instability in low dimensions.
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The space of functions of the form (6.6.1) is invariant under the Fourier transform. Since

a polynomial of degree 2d that is nonnegative on r0,8q can be written as s3pxq ` xs4pxq,

where sipxq “ vpxqTXivpxq for i “ 3, 4 are sum-of-squares polynomials of degree 2d, we

have that f̂ is of the form

pfpxq “
`

s3px
2q ` x2s4px

2q
˘

e´πx
2
.

Let T be the operator that maps x2k to the function k!
πk
L
´1{2
k pπx2q, where Lk is the

Laguerre polynomial of degree k with parameter ´1{2. Then, for p an even polynomial,

we have that pT pqpxqe´πx2
is the Fourier transform of ppxqe´πx

2
. We can now describe the

functions of the form (6.6.1) that are non-positive on rR,8q and have nonnegative Fourier

transform by positive semidefinite matrices X1, . . . , X4 of size d ` 1 whose entries satisfy

the linear relations coming from the identity IpX1, . . . , X4q “ 0, where

IpX1, . . . , X4q “ T
`

´ s1px
2q ´ px2 ´R2qs2px

2q
˘

´
`

s3px
2q ` x2s4px

2q
˘

.

Here T p´s1px
2q´px2´R2qs2px

2qq is a polynomial whose coefficients are linear combinations

in the entries of X1 and X2, and the same for s3px
2q`x2s4px

2q with X3 and X4. The linear

constraints on the entries of X1, . . . , X4 are then obtained by expressing IpX1, . . . , X4q in

some polynomial basis and setting the coefficients to zero.

The conditions fp0q “ 1 and fpRq “ 0 are linear in the entries of X1 and X2, and the

condition pfp0q “ 1 is a linear condition on the entries of X3 and X4. Finally, the objective

Zpfq is a linear combination in the entries of X1 and X2, which can be implemented by

using the identity
ż

xme´πx
2

dx “ ´
1

2πm{2`1{2
Γ
´m` 1

2
, πx2

¯

,

where Γ is the upper incomplete gamma function. Hence, the problem of minimizing Zpfq
over functions f P ALP pdq that satisfy rpfq “ R is a semidefinite program.

To obtain the second part of Theorem 6.1 from Theorem 6.9 and to obtain Theorem 6.6

from 6.11 we use the same approach with a different functional. To obtain Theorem 6.7 from

Theorem 6.12 we also do the same as above, but now truncate the series in the functional

Z1 at k “ 15 and add the easy to compute upper bound 10´10 on the remainder of the

terms.

Implementation and numerical issues

In implementing the above as a semidefinite program we have to make two choices for

the polynomial basis that we use: the basis defining the vector vpxq, and the basis to

enforce the identity IpX1, . . . , X4q “ 0. This choice of bases is important for the numerical

conditioning of the resulting semidefinite program. Following [62] we choose the Laguerre

basis tL
´1{2
n p2πx2qu, as this seems natural and performs well in practice (it multiplied by

e´πx
2

is the complete set of even eigenfunctions of the Fourier transform). We solve the
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semidefinite programs using sdpa-gmp [75], which is a primal-dual interior point solver

using high precision floating point arithmetic. For the code to generate the semidefinite

programs and to perform the post processing we use Julia [4], Nemo [40], and Arb [57]

(where we use Arb for the ball arithmetic used in the verification procedure). For all

computations we use d “ 40. In solving the systems we observe that X1 can be set to zero

everywhere without affecting the bounds, so that rpfq “ R holds exactly for the function

fpxq “ pR2 ´ x2qvpx2qTX2vpx
2qe´πx

2
defined by X2.

The above optimization approach uses floating point arithmetic and a numerical interior

point solver. This means the identity Ip0, X2, X3, X4q “ 0 will not be satisfied exactly, and,

moreover, because the solver can take infeasible steps the matrices X2, X3, and X4 typically

have some eigenvalues that are slightly negative. In practice this leads to incorrect upper

bounds if the floating point precision is not high enough in relation to the degree d. Here

we explain the procedure we use to obtain bounds that are guaranteed to be correct. This

is an adaptation of the method from [62] and [69].

We first solve the above optimization problem numerically to find R and f for which

we have a good objective value v “ Lpfq. Then we solve the semidefinite program again

for the same value of R, but now we solve it as a feasibility problem with the additional

constraint Lpfq ď v ` 10´6. The interior point solver will try to give the analytical center

of the semidefinite program, so that typically the matrices are all positive definite; that is,

the eigenvalues are all strictly positive. Then we use interval arithmetic to check rigorously

that X2, X3, and X4 are positive definite, and we compute a rigorous lower bound b on the

smallest eigenvalues of X3 and X4.

Using interval arithmetic we compute an upper bound B on the largest coefficient of

Ip0, X2, X3, X4q in the basis given by the 2d` 1 entries on the diagonal and upper diagonal

of the matrix pR2 ´ x2qvpx2qvpx2qT . If b ě p1 ` 2dqB, then it follows tat it is possible

to modify the corresponding entries in X3 and X4 such that these matrices stay positive

definite and such that Ip0, X2, X3, X4q “ 0 holds exactly [69]. This shows that the Fourier

transform of the function fpxq “ pR2 ´ x2qvpx2qTX2vpx
2qe´πx

2
is nonnegative.

We use interval arithmetic to compute fp0q “ R2s2p0q, T ppR2 ´ x2qs2px
2qqp0q, and

Zpfq, Z̃pfq, Z1pfq, or Lpfq. We can then compute rigorous bounds by observing that, for

example, the first part of Theorem 6.1 can be written as follows: Suppose f is a continuous

L1pRq function with fpxq ď 0 for |x| ě R and with nonnegative Fourier transform, then

N˚pT q ď

˜

fp0q

f̂p0q
Zpfq ` op1q

¸

NpT q.

Remark 6.13. In the link https: // arxiv. org/ abs/ 1810. 08843 we attach the files ‘Z-

40.txt’, ‘tildeZ-40.txt’, ‘L-40.txt’, and ‘Z1-40.txt’ that contain the value of R on the first line

and the matrices X2, X3 and X4 on the next 3 lines (all in 100 decimal floating point values).

For convenience it also contains the coefficients of f in the monomial basis on the last line

(but these are not used in the verification procedure). We include a script to perform the
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above verification and compute the bounds rigorously, as well as the code for setting up the

semidefinite programs, using a custom semidefinite programming specification library.

Now, we will show these functions (in the monomial basis) that we need to put in

Theorems 6.9, 6.11 and 6.12 to prove Theorems 6.1, 6.6 and 6.7. Since that the coefficients

of the functions are decimal numbers that have around 100 digits, we will truncate them in

the following tables.
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The function f1pxq for the functional Z
In Theorem 6.9, using the function f1pxq defined by

f1pxq “
81
ÿ

k“0

ak x
2k e´πx

2
,

to evaluate the functional Z we obtain the first affirmation of Theorem 6.1. The coefficients

ak are given in the file ‘Z-40.txt’. The following table contains the first 11 digits of the

coefficients ak written in the scientific form4.

k ak k ak k ak

0 1.00000000000...e+00 27 - 2.00604252578...e+09 54 6.31600077580...e – 13

1 - 5.61930744986...e – 01 28 8.88765244247...e+08 55 - 3.58176329682...e – 14

2 2.53470012494...e+01 29 - 3.61223860943...e+08 56 1.88492736201...e – 15

3 - 5.91540175902...e+02 30 1.34839874801...e+08 57 - 9.19771200837...e – 17

4 1.00403659527...e+04 31 - 4.62849221920...e+07 58 4.15752713885...e – 18

5 - 1.23558354977...e+05 32 1.46273876941...e+07 59 - 1.73890163846...e – 19

6 1.14437313949...e+06 33 - 4.26102745771...e+06 60 6.72107084162...e – 21

7 - 8.14064754631...e+06 34 1.14544776797...e+06 61 - 2.39706427262...e – 22

8 4.52000281877...e+07 35 - 2.84456407814...e+05 62 7.87512213760...e – 24

9 - 1.99244854927...e+08 36 6.53237583584...e+04 63 - 2.37859909049...e – 25

10 7.09652171095...e+08 37 - 1.38849606160...e+04 64 6.59016933930...e – 27

11 - 2.07779244720...e+09 38 2.73404596754...e+03 65 - 1.67056564436...e – 28

12 5.08355055658...e+09 39 - 4.99103491546...e+02 66 3.86307240298...e – 30

13 - 1.05537806922...e+10 40 8.45281691947...e+01 67 - 8.12108907968...e – 32

14 1.88600790950...e+10 41 - 1.32894661939...e+01 68 1.54588323804...e – 33

15 - 2.93980682298...e+10 42 1.94064024091...e+00 69 - 2.65213735790...e – 35

16 4.04507506325...e+10 43 - 2.63340360993...e – 01 70 4.07836842393...e – 37

17 - 4.96450359932...e+10 44 3.32196895016...e – 02 71 - 5.58480037924...e – 39

18 5.48089027934...e+10 45 - 3.89688519940...e – 03 72 6.75672510240...e – 41

19 - 5.47806082895...e+10 46 4.25195577287...e – 04 73 - 7.15291516397...e – 43

20 4.97839424495...e+10 47 - 4.31599240314...e – 05 74 6.54672047966...e – 45

21 - 4.12453522456...e+10 48 4.07596968487...e – 06 75 - 5.10134804489...e – 47

22 3.11950633425...e+10 49 - 3.58131005016...e – 07 76 3.31644721518...e – 49

23 - 2.15534325017...e+10 50 2.92738287922...e – 08 77 - 1.74948709650...e – 51

24 1.36094861588...e+10 51 - 2.22572598365...e – 09 78 7.19154041640...e – 54

25 - 7.85672038705...e+09 52 1.57364385611...e – 10 79 - 2.16036249384...e – 56

26 4.14918386342...e+09 53 - 1.03425977054...e – 11 80 4.21713157530...e – 59

81 - 4.01324649596...e – 62

4We recall that the notation me˘n means m ¨ 10˘n.
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The function f2pxq for the functional rZ
In Theorem 6.9, using the function f2pxq defined by

f2pxq “
81
ÿ

k“0

bk x
2k e´πx

2
,

to evaluate the functional rZ we obtain the second affirmation of Theorem 6.1. The coeffi-

cients bk are given in the file ‘tildeZ-40.txt’. The following table contains the first 11 digits

of the coefficients bk written in the scientific form.

k bk k bk k bk

0 1.00000000000...e+00 27 - 5.75974866587...e+07 54 5.40068435403...e – 14

1 1.06665168220...e – 01 28 2.45777816880...e+07 55 - 3.23922205805...e – 15

2 6.81481916247...e+00 29 - 9.80603175046...e+06 56 1.80231560087...e – 16

3 - 1.37110374214...e+02 30 3.65016083510...e+06 57 - 9.29503076196...e – 18

4 2.26128992850...e+03 31 - 1.26520471124...e+06 58 4.43886712924...e – 19

5 - 2.69844166980...e+04 32 4.07758498777...e+05 59 - 1.96064712420...e – 20

6 2.38119359029...e+05 33 - 1.22073122870...e+05 60 7.99949934378...e – 22

7 - 1.60226943210...e+06 34 3.39300155211...e+04 61 - 3.01029190208...e – 23

8 8.41843420767...e+06 35 - 8.75415033780...e+03 62 1.04300993651...e – 24

9 - 3.52227724480...e+07 36 2.09667557301...e+03 63 - 3.32082406067...e – 26

10 1.19406304232...e+08 37 - 4.66253364582...e+02 64 9.69393663653...e – 28

11 - 3.33068477173...e+08 38 9.62960956261...e+01 65 - 2.58777475250...e – 29

12 7.74919615522...e+08 39 - 1.84769214729...e+01 66 6.29840798749...e – 31

13 - 1.52196020968...e+09 40 3.29476957992...e+00 67 - 1.39289627024...e – 32

14 2.55027648723...e+09 41 - 5.46170412293...e – 01 68 2.78776155288...e – 34

15 - 3.68102336235...e+09 42 8.41897556029...e – 02 69 - 5.02590245604...e – 36

16 4.61738945493...e+09 43 - 1.20704049913...e – 02 70 8.11718658615...e – 38

17 - 5.07627927018...e+09 44 1.60990476909...e – 03 71 - 1.16677572973...e – 39

18 4.93216323989...e+09 45 - 1.99782398529...e – 04 72 1.48092961221...e – 41

19 - 4.27111829619...e+09 46 2.30692178965...e – 05 73 - 1.64382673631...e – 43

20 3.32533440042...e+09 47 - 2.47880496990...e – 06 74 1.57661969041...e – 45

21 - 2.34853701839...e+09 48 2.47841742324...e – 07 75 - 1.28668759190...e – 47

22 1.51810502093...e+09 49 - 2.30562965247...e – 08 76 8.75590310106...e – 50

23 - 9.05722190738...e+08 50 1.99534288300...e – 09 77 - 4.83207038146...e – 52

24 5.02326758272...e+08 51 - 1.60603663997...e – 10 78 2.07680004966...e – 54

25 - 2.60341739732...e+08 52 1.20189031134...e – 11 79 - 6.51937952081...e – 57

26 1.26450831957...e+08 53 - 8.35927891328...e – 13 80 1.32911223372...e – 59

81 - 1.32027652476...e – 62
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The function f3pxq for the functional L
In Theorem 6.11, using the function f3pxq defined by

f3pxq “
81
ÿ

k“0

ck x
2k e´πx

2
,

to evaluate the functional L we obtain Theorem 6.6. The coefficients ck are given in the file

‘L-40.txt’. The following table contains the first 11 digits of the coefficients ck written in

the scientific form.

k ck k ck k ck

0 1.00000000000...e+00 27 - 1.62713819169...e+09 54 1.67488448322...e – 13

1 - 1.47953929665...e – 01 28 6.91432416117...e+08 55 - 9.21143270000...e – 15

2 7.46561646903...e+00 29 - 2.69019242288...e+08 56 4.70533150477...e – 16

3 - 1.41693776067...e+02 30 9.60033249385...e+07 57 - 2.23052537067...e – 17

4 2.82315629755...e+03 31 - 3.14758048606...e+07 58 9.80276873641...e – 19

5 - 4.16844775995...e+04 32 9.49576219383...e+06 59 - 3.98948768923...e – 20

6 4.42792036366...e+05 33 - 2.63983078885...e+06 60 1.50154512964...e – 21

7 - 3.48174087486...e+06 34 6.77177665034...e+05 61 - 5.21859627614...e – 23

8 2.09053967925...e+07 35 - 1.60491853060...e+05 62 1.67189309621...e – 24

9 - 9.86082020920...e+07 36 3.51826021315...e+04 63 - 4.92764518062...e – 26

10 3.74601385112...e+08 37 - 7.14144888016...e+03 64 1.33308619818...e – 27

11 - 1.17092463108...e+09 38 1.34352537567...e+03 65 - 3.30165720252...e – 29

12 3.06697777952...e+09 39 - 2.34468342999...e+02 66 7.46377080670...e – 31

13 - 6.83589677473...e+09 40 3.79874157642...e+01 67 - 1.53473749557...e – 32

14 1.31328377541...e+10 41 - 5.71758267322...e+00 68 2.85900983404...e – 34

15 - 2.19780303480...e+10 42 7.99953183571...e – 01 69 - 4.80249057795...e – 36

16 3.23153514097...e+10 43 - 1.04092919473...e – 01 70 7.23417344271...e – 38

17 - 4.20343793764...e+10 44 1.26029040153...e – 02 71 - 9.70802347115...e – 40

18 4.86364413100...e+10 45 - 1.42024956485...e – 03 72 1.15148315210...e – 41

19 - 5.02808494687...e+10 46 1.49011074771...e – 04 73 - 1.19555396941...e – 43

20 4.66133336021...e+10 47 - 1.45583045301...e – 05 74 1.07357113943...e – 45

21 - 3.88715083841...e+10 48 1.32459400923...e – 06 75 - 8.21029998894...e – 48

22 2.92384944296...e+10 49 - 1.12237508525...e – 07 76 5.24023483503...e – 50

23 - 1.98868177565...e+10 50 8.85607265152...e – 09 77 - 2.71468483935...e – 52

24 1.22595905682...e+10 51 - 6.50604105163...e – 10 78 1.09617620394...e – 54

25 - 6.86513734151...e+09 52 4.44884923783...e – 11 79 - 3.23552971770...e – 57

26 3.49949228901...e+09 53 - 2.83056293932...e – 12 80 6.20724710063...e – 60

81 - 5.80679295834...e – 63
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The function f4pxq for the functional Z1

In Theorem 6.12, using the function f4pxq defined by

f4pxq “
81
ÿ

k“0

dk x
2k e´πx

2
,

to evaluate the functional Z1 we obtain Theorem 6.7. The coefficients dk are given in the

file ‘Z1-40.txt’. The following table contains the first 11 digits of the coefficients dk written

in the scientific form.

k dk k dk k dk

0 9.99999999999...e – 01 27 - 1.21739898850...e+09 54 7.33828073532...e – 13

1 3.42888040970...e – 01 28 5.47472801084...e+08 55 - 4.27557647019...e – 14

2 8.62434074947...e+00 29 - 2.26364482361...e+08 56 2.31181372249...e – 15

3 - 1.92714557575...e+02 30 8.61069449683...e+07 57 - 1.15907009029...e – 16

4 3.95349282450...e+03 31 - 3.01579160626...e+07 58 5.38325088226...e – 18

5 - 6.05529323704...e+04 32 9.73414002879...e+06 59 - 2.31349758399...e – 19

6 6.55351358594...e+05 33 - 2.89835879345...e+06 60 9.18795709960...e – 21

7 - 5.15583483128...e+06 34 7.96885439807...e+05 61 - 3.36702063429...e – 22

8 3.05343039445...e+07 35 - 2.02512227067...e+05 62 1.13659437771...e – 23

9 - 1.40321299164...e+08 36 4.76126626898...e+04 63 - 3.52732505443...e – 25

10 5.13245942674...e+08 37 - 1.03654777780...e+04 64 1.00412614146...e – 26

11 - 1.52644075646...e+09 38 2.09123707416...e+03 65 - 2.61524107399...e – 28

12 3.75986830304...e+09 39 - 3.91277860362...e+02 66 6.21332653301...e – 30

13 - 7.79552991505...e+09 40 6.79398761236...e+01 67 - 1.34194006086...e – 31

14 1.38061105251...e+10 41 - 1.09541608687...e+01 68 2.62424977373...e – 33

15 - 2.11711001129...e+10 42 1.64086820335...e+00 69 - 4.62502476396...e – 35

16 2.84693484648...e+10 43 - 2.28455587633...e – 01 70 7.30586885340...e – 37

17 - 3.39711275245...e+10 44 2.95749901834...e – 02 71 - 1.02762854379...e – 38

18 3.63574085438...e+10 45 - 3.56099424334...e – 03 72 1.27697251610...e – 40

19 - 3.52220170924...e+10 46 3.98876506824...e – 04 73 - 1.38840744239...e – 42

20 3.11106477178...e+10 47 - 4.15709505586...e – 05 74 1.30501681974...e – 44

21 - 2.51798139126...e+10 48 4.03140031534...e – 06 75 - 1.04424840952...e – 46

22 1.87282572851...e+10 49 - 3.63774216039...e – 07 76 6.97083689452...e – 49

23 - 1.28161059657...e+10 50 3.05406002297...e – 08 77 - 3.77555102113...e – 51

24 8.06981195014...e+09 51 - 2.38514645395...e – 09 78 1.59335518452...e – 53

25 - 4.67342328757...e+09 52 1.73231592460...e – 10 79 - 4.91360551692...e – 56

26 2.48807657650...e+09 53 - 1.16964668909...e – 11 80 9.84542414954...e – 59

81 - 9.61648178295...e – 62
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6.6.2 Proof of Theorem 6.4

To obtain the first part of Theorem 6.4 from Theorem 6.10 we need to minimize the

function P over the space ALP . We can formulate this as a bilevel optimization problem

in which we optimize over R ě 1 in the outer problem. In the inner problem we perform

a binary search over Λ to find the smallest Λ for which there exists a function f P ALP pdq

that satisfies fpRq “ 0, fpxq ď 0 for |x| ě R, and pf pΛq ě 0.

To get a bound whose correctness we can verify rigorously we replace the constraints

fp0q “ 1, pfp0q “ 1, and pf pΛq ě 0 by fp0q “ 1´10´10, pfp0q “ 1`10´10, and pf pΛq ě 10´10.

We then use the above optimization approach to find good values for R and Λ. We then

add 10´6 to Λ and solve the feasibility problem again to get the strictly feasible matrices

X2, X3, and X4. By performing the same procedure as in 6.6.1 we can verify that the

Fourier transform of the function f defined by X2 is nonnegative everywhere, and using

interval arithmetic we can check that the inequalities fp0q ď 1, pfp0q ě 1, and pf pΛq ą 0

all hold. Note that this verification procedure does not actually check that Λ is equal to or

even close to Ppfq, but the proof of Theorem 6.10 also works if we replace Ppfq by any Λ

for which pf pΛq is strictly positive. To obtain the second part of the theorem, we do the

same except that we replace pf by rpf .

Remark 6.14. In the link https: // arxiv. org/ abs/ 1810. 08843 we attach the files ‘P-

40.txt’, ‘tildeP-40.txt’, that have the same layout as the files mentioned in 6.6.1, with an

additional line containing the value of Λ. We again include the code to perform the verifi-

cation and to produce the files.

Now, we will show these functions (in the monomial basis) that we need to put in

Theorem 6.10 to prove Theorem 6.4. Since that the coefficients of the functions are decimal

numbers that have around 100 digits, we will truncate them in the following tables.
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The function f5pxq for the functional P
In Theorem 6.10, using the function f5pxq defined by

f5pxq “
81
ÿ

k“0

hk x
2k e´πx

2
,

to evaluate the functional P we obtain the first affirmation of Theorem 6.4. The coefficients

hk are given in the file ‘P-40.txt’. The following table contains the first 11 digits of the

coefficients hk written in the scientific form.

k hk k hk k hk

0 9.99999999899...e – 01 27 - 2.86914456546...e+08 54 6.51474548305...e – 14

1 7.94132965649...e – 01 28 1.25801976387...e+08 55 - 3.66543897877...e – 15

2 4.58924844700...e+00 29 - 5.04928972482...e+07 56 1.91375946657...e – 16

3 - 5.46240567761...e+01 30 1.85867378275...e+07 57 - 9.26387211404...e – 18

4 4.74094778540...e+02 31 - 6.28582298290...e+06 58 4.15326060530...e – 19

5 - 3.63771002122...e+03 32 1.95614912652...e+06 59 - 1.72248358970...e – 20

6 2.64054225852...e+04 33 - 5.60996740119...e+05 60 6.59919313741...e – 22

7 - 1.78884628040...e+05 34 1.48464174938...e+05 61 - 2.33190384609...e – 23

8 1.06308836764...e+06 35 - 3.63011354411...e+04 62 7.58632526338...e – 25

9 - 5.31859854914...e+06 36 8.20999417529...e+03 63 - 2.26756514046...e – 26

10 2.21249623889...e+07 37 - 1.71922020984...e+03 64 6.21262812276...e – 28

11 - 7.67460850361...e+07 38 3.33645434583...e+02 65 - 1.55600621464...e – 29

12 2.23846189810...e+08 39 - 6.00567342312...e+01 66 3.55164221297...e – 31

13 - 5.54293209856...e+08 40 1.00341178482...e+01 67 - 7.36185981921...e – 33

14 1.17615184025...e+09 41 - 1.55710260797...e+00 68 1.38007193483...e – 34

15 - 2.15678057442...e+09 42 2.24552464415...e – 01 69 - 2.32858377264...e – 36

16 3.44398100572...e+09 43 - 3.01082908649...e – 02 70 3.51652660973...e – 38

17 - 4.82117558548...e+09 44 3.75483417992...e – 03 71 - 4.72135477088...e – 40

18 5.95224307789...e+09 45 - 4.35676664728...e – 04 72 5.59066088338...e – 42

19 - 6.51565440493...e+09 46 4.70438640957...e – 05 73 - 5.78159915473...e – 44

20 6.35411193002...e+09 47 - 4.72788183876...e – 06 74 5.15855052456...e – 46

21 - 5.54409593739...e+09 48 4.42260311100...e – 07 75 - 3.90982168592...e – 48

22 4.34474248411...e+09 49 - 3.85054353274...e – 08 76 2.46642462092...e – 50

23 - 3.06885201539...e+09 50 3.11993063978...e – 09 77 - 1.25923320536...e – 52

24 1.95997402875...e+09 51 - 2.35208223876...e – 10 78 4.99594272182...e – 55

25 - 1.13514178605...e+09 52 1.64933364060...e – 11 79 - 1.44425015692...e – 57

26 5.97765655014...e+08 53 - 1.07530724996...e – 12 80 2.70454837045...e – 60

81 - 2.46093963203...e – 63
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The function f6pxq for the functional rPpfq
In Theorem 6.10, using the function f6pxq defined by

f6pxq “
81
ÿ

k“0

jk x
2k e´πx

2
,

to evaluate the functional rPpfq we obtain the second affirmation of Theorem 6.4. The

coefficients jk are given in the file ‘tildeP-40.txt’. The following table contains the first 11

digits of the coefficients jk written in the scientific form.

k jk k jk k jk

0 9.99999999899...e – 01 27 - 1.27065723098...e+09 54 3.30671952407...e – 14

1 7.46321420919...e – 01 28 5.28134626882...e+08 55 - 1.58145385656...e – 15

2 1.34437583052...e+01 29 - 2.01523901671...e+08 56 6.95427402084...e – 17

3 - 4.49802718765...e+02 30 7.06577362276...e+07 57 - 2.81297135448...e – 18

4 9.03498933773...e+03 31 - 2.27824912283...e+07 58 1.04880280566...e – 19

5 - 1.20474288673...e+05 32 6.76068228575...e+06 59 - 3.62221467987...e – 21

6 1.13367854426...e+06 33 - 1.84779880130...e+06 60 1.16964211898...e – 22

7 - 7.92467843245...e+06 34 4.65488953673...e+05 61 - 3.58400774583...e – 24

8 4.28672860773...e+07 35 - 1.08157748267...e+05 62 1.06214317301...e – 25

9 - 1.85234402075...e+08 36 2.31946034755...e+04 63 - 3.09706067285...e – 27

10 6.55035956018...e+08 37 - 4.59373339347...e+03 64 8.93850975692...e – 29

11 - 1.93050352411...e+09 38 8.40697629773...e+02 65 - 2.52746385116...e – 30

12 4.80811884789...e+09 39 - 1.42242137740...e+02 66 6.85049985153...e – 32

13 - 1.02318487175...e+10 40 2.22597522485...e+01 67 - 1.73720864386...e – 33

14 1.87754961403...e+10 41 - 3.22308549919...e+00 68 4.03802844482...e – 35

15 - 2.99498151229...e+10 42 4.31918748556...e – 01 69 - 8.47147306837...e – 37

16 4.18380327494...e+10 43 - 5.35785142539...e – 02 70 1.58545800407...e – 38

17 - 5.15364408403...e+10 44 6.15282598216...e – 03 71 - 2.62161285132...e – 40

18 5.63399311209...e+10 45 - 6.54101602948...e – 04 72 3.79509447524...e – 42

19 - 5.49863231365...e+10 46 6.43642772940...e – 05 73 - 4.76227643830...e – 44

20 4.81684610156...e+10 47 - 5.86090089095...e – 06 74 5.11962404543...e – 46

21 - 3.80540307750...e+10 48 4.93673398982...e – 07 75 - 4.64566920746...e – 48

22 2.72231101464...e+10 49 - 3.84459071508...e – 08 76 3.48919510158...e – 50

23 - 1.76950624351...e+10 50 2.76641133343...e – 09 77 - 2.11093203805...e – 52

24 1.04796869377...e+10 51 - 1.83782601851...e – 10 78 9.88537409836...e – 55

25 - 5.66748772113...e+09 52 1.12623139508...e – 11 79 - 3.36246819076...e – 57

26 2.80379107554...e+09 53 - 6.36013436082...e – 13 80 7.39090043478...e – 60

81 - 7.88001814579...e – 63
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Chapter 7

Appendices

7.1 Prelude

Throughout these appendices we encounter the following setting in multiple situations:

let c ą 0 be a given real number and 1
2 ď σ ă 1 and x ě 3 be such that

p1´ σq2 log x ě c. (7.1.1)

Let us note that, if 0 ď θ1, θ2 are real numbers, it follows from (7.1.1) that

p1´ σqθ1 plog xqθ2 !c,θ1,θ2 x
1´σ. (7.1.2)

In fact, if θ1 ą θ2 we simply observe that

p1´ σqθ1 plog xqθ2 ď p1´ σqθ2 plog xqθ2 !θ2 x
1´σ.

On the other hand, if 0 ď θ1 ď θ2, we let ` “ θ2´ θ1 ě 0 and η “ θ1` 2` “ θ2` ` to obtain

p1´ σqθ1 plog xqθ2 !c,θ1,θ2 p1´ σq
θ1 plog xqθ2

`

p1´ σq2 log x
˘`
“

`

p1´ σq log x
˘η
!η x

1´σ.

We now proceed with the calculus facts required for our analysis.

7.2 Appendix A: Calculus facts

A.1 Let c ą 0 be a given real number and m ě 0 be a given integer. For 1
2 ď σ ă 1 and

x ě 2 such that p1´ σq2 log x ě c, we have

ż x

2

1

tσplog tq2m`2
dt “

x1´σ

p1´ σqplog xq2m`2
`Om,c

ˆ

x1´σ

p1´ σq2plog xq2m`3

˙

.
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Proof. Using integration by parts we get

ż x

2

1

tσplog tq2m`2
dt “

x1´σ

p1´ σqplog xq2m`2
´

21´σ

p1´ σqplog 2q2m`2

`
p2m` 2q

p1´ σq

ż x

2

1

tσ plog tq2m`3
dt.

(7.2.1)

From (7.1.2) we have

21´σ

p1´ σqplog 2q2m`2
!m

1

p1´ σq
!m,c

x1´σ

p1´ σq2plog xq2m`3
, (7.2.2)

and

ż x

2

1

tσ plog tq2m`3
dt “

ż x2{3

2

1

tσplog tq2m`3
dt`

ż x

x2{3

1

tσplog tq2m`3
dt

ď
1

plog 2q2m`3

ż x2{3

2

1

tσ
dt`

1

plogpx2{3qq2m`3

ż x

x2{3

1

tσ
dt

!m
x

2
3
p1´σq

p1´ σq
`

x1´σ

p1´ σqplog xq2m`3

!m,c
x1´σ

p1´ σqplog xq2m`3
.

(7.2.3)

The desired inequality follows by combining (7.2.1), (7.2.2), and (7.2.3).

A.2 Let c ą 0 be a given real number and m ě 0 and k ě 1 be given integers. For
1
2 ď σ ă 1 and x ě 2 such that p1´ σq2 log x ě c, we have

ż x

2

1

tσpk log x` log tq2m`2
dt “

x1´σ

p1´ σqppk ` 1q log xq2m`2
´

21´σ

p1´ σqpk log x` log 2q2m`2

`Om,c

ˆ

x1´σ

p1´ σq2ppk ` 1q log xq2m`3

˙

.

Proof. Using the change of variables y “ xkt and A.1 we obtain

ż x

2

1

tσpk log x` log tq2m`2
dt “ x´k`kσ

ż xk`1

2xk

1

yσplog yq2m`2
dy

“ x´k`kσ

«

ż xk`1

2

1

yσplog yq2m`2
dy ´

ż 2xk

2

1

yσplog yq2m`2
dy

ff

“ x´k`kσ

«

pxk`1q1´σ

p1´ σqplog xpk`1qq2m`2
`Om,c

ˆ

pxk`1q1´σ

p1´ σq2plog xpk`1qq2m`3

˙

´
p2xkq1´σ

p1´ σqplogp2xkqq2m`2
`Om,c

ˆ

p2xkq1´σ

p1´ σq2plogp2xkqq2m`3

˙

ff

“
x1´σ

p1´ σqppk ` 1q log xq2m`2
´

21´σ

p1´ σqpk log x` log 2q2m`2

136



`Om,c

ˆ

x1´σ

p1´ σq2ppk ` 1q log xq2m`3

˙

`Om,c

ˆ

1

p1´ σq2pk log x` log 2q2m`3

˙

.

Since

1

p1´ σq2pk log x` log 2q2m`3
ď

22m`3

p1´ σq2ppk ` 1q log xq2m`3
!m

x1´σ

p1´ σq2ppk ` 1q log xq2m`3
,

we obtain the desired result.

A.3 Let m ě 0 and k ě 0 be given integers. For 1
2 ď σ ă 1 and x ě 2 we have

ż x

2

1

t1´σppk ` 2q log x´ log tq2m`2
dt “

xσ

σppk ` 1q log xq2m`2
´

2σ

σppk ` 2q log x´ log 2q2m`2

`Om

ˆ

xσ

ppk ` 1q log xq2m`3

˙

.

Proof. Let y “ xk`2

t . The integral becomes

xpk`2qσ

ż xk`2{2

xk`1

1

y1`σplog yq2m`2
dy “

xσ

σppk ` 1q log xq2m`2
´

2σ

σppk ` 2q log x´ log 2q2m`2

´
p2m` 2qxpk`2qσ

σ

ż xk`2{2

xk`1

1

y1`σplog yq2m`3
dy ,

where we have used integration by parts. Finally, the result follows from the fact that

ż xk`2{2

xk`1

1

y1`σplog yq2m`3
dy !

1

ppk ` 1q log xq2m`3

ż xk`2{2

xk`1

1

y1`σ
dy

!
1

xpk`1qσppk ` 1q log xq2m`3
.

A.4 For 1
2 ă σ ă 1 and x ě 2 we have

8
ÿ

k“1

1
`

xσ´1{2
˘k
ď

1

pσ ´ 1
2q log x

.

Proof. Using the mean value theorem we have that

8
ÿ

k“1

1
`

xσ´1{2
˘k
“

1

xσ´1{2 ´ 1
“

1

pσ ´ 1
2qx

ξ log x
ď

1

pσ ´ 1
2q log x

,

where ξ is a point in the interval p0, σ ´ 1
2q.
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A.5 Let m ě 0 be a given integer. For 1
2 ď σ ă 1 and x ě 2 we have

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ˇ

ˇ

ˇ

ˇ

ˇ

2σ

x2σ´1 ppk ` 2q log x´ log 2q2m`2
´

21´σ

pk log x` log 2q2m`2

ˇ

ˇ

ˇ

ˇ

ˇ

!m
x1´σ

p1´ σq2plog xq2m`3
,

and

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ˇ

ˇ

ˇ

ˇ

ˇ

2σ

x2σ´1σppk ` 2q log x´ log 2q2m`2
´

21´σ

p1´ σqpk log x` log 2q2m`2

ˇ

ˇ

ˇ

ˇ

ˇ

!m
x1´σ

p1´ σq2plog xq2m`3
.

Proof. Using the mean value theorem for the functions y ÞÑ y2m`2 and y ÞÑ 2σ´yxy we

obtain, for k ě 1, that

ˇ

ˇ

ˇ

ˇ

ˇ

2σ

x2σ´1ppk ` 2q log x´ log 2q2m`2
´

21´σ

pk log x` log 2q2m`2

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

2σ

x2σ´1

ˆ

1

ppk ` 2q log x´ log 2q2m`2
´

1

pk log x` log 2q2m`2

˙ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

1

pk log x` log 2q2m`2

ˆ

2σ

x2σ´1
´ 21´σ

˙ˇ

ˇ

ˇ

ˇ

“
2σ

x2σ´1

ˆ

ppk ` 2q log x´ log 2q2m`2 ´ pk log x` log 2q2m`2

ppk ` 2q log x´ log 2q2m`2pk log x` log 2q2m`2

˙

`
1

pk log x` log 2q2m`2

ˆ

21´σx2σ´1 ´ 2σ

x2σ´1

˙

ď
2σ

x2σ´1

ˆ

2p2m` 2qplog x´ log 2qppk ` 2q log x´ log 2q2m`1

ppk ` 2q log x´ log 2q2m`2pk log x` log 2q2m`2

˙

`
p2σ ´ 1q21´σplog x´ log 2q

pk log x` log 2q2m`2

!m
1

x2σ´1pk ` 1q2m`3plog xq2m`2
`

p2σ ´ 1q

pk ` 1q2m`2plog xq2m`1
.

Therefore, summing over all k ě 1 and using A.4, we arrive at

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ˇ

ˇ

ˇ

ˇ

ˇ

2σ

x2σ´1ppk ` 2q log x´ log 2q2m`2
´

21´σ

pk log x` log 2q2m`2

ˇ

ˇ

ˇ

ˇ

ˇ

!m

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ˆ

1

x2σ´1pk ` 1q2m`3plog xq2m`2
`

p2σ ´ 1q

pk ` 1q2m`2plog xq2m`1

˙

ď
1

x2σ´1plog xq2m`2

8
ÿ

k“1

1
`

xσ´´1{2
˘k
pk ` 1q2m`2

`
2σ ´ 1

plog xq2m`1

8
ÿ

k“1

1
`

xσ´1{2
˘k

!
1

plog xq2m`2
!

x1´σ

p1´ σqplog xq2m`3
!

x1´σ

p1´ σq2plog xq2m`3
,
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which establishes our first proposed estimate. To prove the second, we use the first one and

A.4 as follows

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ˇ

ˇ

ˇ

ˇ

ˇ

2σ

x2σ´1 σppk ` 2q log x´ log 2q2m`2
´

21´σ

p1´ σqpk log x` log 2q2m`2

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

σ

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ˇ

ˇ

ˇ

ˇ

ˇ

2σ

x2σ´1ppk ` 2q log x´ log 2q2m`2
´

21´σ

pk log x` log 2q2m`2

ˇ

ˇ

ˇ

ˇ

ˇ

`

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ˇ

ˇ

ˇ

ˇ

ˇ

21´σ

σpk log x` log 2q2m`2
´

21´σ

p1´ σqpk log x` log 2q2m`2

ˇ

ˇ

ˇ

ˇ

ˇ

!m
x1´σ

p1´ σq2plog xq2m`3
`

2σ ´ 1

σp1´ σq

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ˆ

21´σ

pk log x` log 2q2m`2

˙

!
x1´σ

p1´ σq2plog xq2m`3
`

2σ ´ 1

σp1´ σqplog xq2m`2

8
ÿ

k“1

1
`

xσ´1{2
˘k

!
x1´σ

p1´ σq2plog xq2m`3
`

1

p1´ σqplog xq2m`3

!
x1´σ

p1´ σq2plog xq2m`3
.

A.6 For 1
2 ă σ ă 1 and 2 ď n ď x we have

0 ď
8
ÿ

k“0

p´1qk

˜

k ` 1

plog nxkq pnxkqσ´1{2
´

k ` 1
`

log xk`2

n

˘`

xk`2

n

˘σ´1{2

¸

ď
1

nσ´1{2 log n
´

nσ´1{2

p2 log x´ log nqx2σ´1
.

Proof. See [14, Eq. (2.14), (2.16) and Lemma 6].

A.7 Let z, w be complex numbers such that |w| ď 25. Then

plogp|z ` w| ` 3qq16 ě logp|z| ` 3q.

Proof. If |z| ą 25, then

plogp|z ` w| ` 3qq16 ě logp|z| ´ |w| ` 3qplog 3q15 ą 4 logp|z| ´ 22q ě logp|z| ` 3q,

since plog 3q15 ą 4. On the other hand, if |z| ď 25

plogp|z ` w| ` 3qq16 ě plog 3q16 ą 4 ą logp28q ě logp|z| ` 3q.
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7.3 Appendix B: Number theory facts

Recall that, under the Riemann hypothesis, the prime number theorem takes the form

([74, Section 13.1])
ÿ

nďx

Λpnq “ x`O
`

x1{2plog xq2
˘

. (7.3.1)

In what follows we shall use in integration by parts in multiple occasions. Let ε ą 0 be a

small number and f : Ω Ñ R, where Ω “ tpx, yq P R2; 2 ď x ă 8 ; 1 ď y ď x ` 2εu, be a

function such that y ÞÑ fpx, yq is continuously differentiable in p1, x` εq, for all x P r2,8q.

Using (7.3.1) we obtain

ÿ

nďx

Λpnqfpx, nq “

ż x

2
fpx, yq dy ` 2fpx, 2q `O

`

x1{2plog xq2 |fpx, xq|
˘

`O

ˆ
ż x

2
y1{2plog yq2

ˇ

ˇ

ˇ

ˇ

B

By
fpx, yq

ˇ

ˇ

ˇ

ˇ

dy

˙

.

(7.3.2)

We now proceed with the number theory facts required for our analysis. We assume the

Riemann hypothesis in all the statements below.

B.1 Let c ą 0 be a given real number and m ě 0 be an integer or m “ ´1
2 . For

1
2 ď σ ă 1 and x ě 2 such that p1´ σq2 log x ě c, we have

ÿ

nďx

Λpnq

nσplog nq2m`2
“

x1´σ

p1´ σqplog xq2m`2
`Om,c

ˆ

x1´σ

p1´ σq2plog xq2m`3

˙

.

Proof. We will prove the case m ě 0 be an integer. The case m “ ´1
2 need refinement in

the calculus but it follows the same idea. Using (7.3.2), together with A.1 and (7.1.2), we

obtain

ÿ

nďx

Λpnq

nσplog nq2m`2
“

ż x

2

1

yσplog yq2m`2
dy `

21´σ

plog 2q2m`2
`O

ˆ

x1{2plog xq2

xσplog xq2m`2

˙

`O

ˆ
ż x

2
y1{2plog yq2

ˇ

ˇ

ˇ

ˇ

B

By

„

1

yσplog yq2m`2

ˇ

ˇ

ˇ

ˇ

dy

˙

“
x1´σ

p1´ σqplog xq2m`2
`Om,c

ˆ

x1´σ

p1´ σq2plog xq2m`3

˙

`Om

ˆ
ż x

2

1

yσ`1{2
dy

˙

.

We now analyze the last term. From (7.1.2) we have

ż x

2

1

yσ`1{2
dy ď

ż x

2

1

y
dy ď log x !m,c

x1´σ

p1´ σq2plog xq2m`3
, (7.3.3)

and this concludes the proof.
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B.2 Let c ą 0 be a given real number and m ě 0 be an integer or m “ ´1
2 . For

1
2 ď σ ă 1 and x ě 2 such that p1´ σq2 log x ě c, we have

1

x2σ´1

ÿ

nďx

Λpnq

n1´σp2 log x´ log nq2m`2
“

x1´σ

σplog xq2m`2
`Om,c

ˆ

x1´σ

p1´ σq2plog xq2m`3

˙

.

Proof. We will prove the case m ě 0 be an integer. Using (7.3.2) together with A.3, we

have

1

x2σ´1

ÿ

nďx

Λpnq

n1´σp2 log x´ log nq2m`2

“
1

x2σ´1

ż x

2

1

y1´σp2 log x´ log yq2m`2
dy `

2σ

x2σ´1 p2 log x´ log 2q2m`2

`O

ˆ

1

xσ´1{2plog xq2m

˙

`O

ˆ

1

x2σ´1

ż x

2
y1{2plog yq2

ˇ

ˇ

ˇ

ˇ

B

By

„

1

y1´σp2 log x´ log yq2m`2


ˇ

ˇ

ˇ

ˇ

dy

˙

“
x1´σ

σplog xq2m`2
`Om

ˆ

x1´σ

plog xq2m`3

˙

`Op1q

`O

ˆ

1

x2σ´1

ż x

2
y1{2plog yq2

ˇ

ˇ

ˇ

ˇ

B

By

„

1

y1´σp2 log x´ log yq2m`2

ˇ

ˇ

ˇ

ˇ

dy

˙

. (7.3.4)

We further analyze the last term

1

x2σ´1

ż x

2
y1{2plog yq2

ˇ

ˇ

ˇ

ˇ

ˇ

B

By

„

1

y1´σp2 log x´ log yq2m`2



ˇ

ˇ

ˇ

ˇ

ˇ

dy

!m

ż x

2

plog yq2

x2σ´1 y3{2´σp2 log x´ log yq2m`2
dy

ď

ż x

2

plog yq2

y2σ´1 y3{2´σp2 log x´ log yq2m`2
dy

ď

ż x

2

1

yσ`1{2
dy.

Therefore, using (7.1.2) and (7.3.3) in (7.3.4) we obtain the result.

B.3 Let c ą 0 be a given real number and m ě 0 be a given integer. For 1
2 ď σ ă 1

and x ě 2 such that p1´ σq2 log x ě c, we have

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nďx

Λpnq

˜

1

nσpk log x` log nq2m`2
´

1

x2σ´1 n1´σppk ` 2q log x´ log nq2m`2

¸ˇ

ˇ

ˇ

ˇ

ˇ

!m,c
x1´σ

p1´ σq2plog xq2m`3
.

Besides, when 1
2 ă σ ă 1, we have

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

nďx

Λpnq

˜

1

nσpk log x` log nq
´

1

x2σ´1 n1´σppk ` 2q log x´ log nq

¸ˇ

ˇ

ˇ

ˇ

ˇ
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!m,c
x1´σ

pσ ´ 1
2qp1´ σq

2plog xq2
.

Proof. We will prove the first result. The second result follows the same outline. Using

(7.3.2), A.2 and A.3 we have, for any k ě 1,

ÿ

nďx

Λpnq

˜

1

nσpk log x` log nq2m`2
´

1

x2σ´1 n1´σppk ` 2q log x´ log nq2m`2

¸

“

ż x

2

˜

1

yσpk log x` log yq2m`2
´

1

x2σ´1 y1´σppk ` 2q log x´ log yq2m`2

¸

dy

` 2

˜

1

2σpk log x` log 2q2m`2
´

1

x2σ´1 21´σppk ` 2q log x´ log 2q2m`2

¸

`O

˜

ż x

2
y1{2plog yq2

ˇ

ˇ

ˇ

ˇ

ˇ

B

By

«

1

yσpk log x` log yq2m`2

´
1

x2σ´1 y1´σppk ` 2q log x´ log yq2m`2

ffˇ

ˇ

ˇ

ˇ

ˇ

dy

¸

“
2σ ´ 1

σp1´ σq

x1´σ

ppk ` 1q log xq2m`2

`

ˆ

2σ

x2σ´1 σppk ` 2q log x´ log 2q2m`2
´

21´σ

p1´ σqpk log x` log 2q2m`2

˙

`

ˆ

21´σ

pk log x` log 2q2m`2
´

2σ

x2σ´1 ppk ` 2q log x´ log 2q2m`2

˙

`Om,c

ˆ

x1´σ

p1´ σq2ppk ` 1q log xq2m`3

˙

`O

˜

ż x

2
y1{2plog yq2

ˇ

ˇ

ˇ

ˇ

ˇ

B

By

«

1

yσpk log x` log yq2m`2

´
1

x2σ´1 y1´σppk ` 2q log x´ log yq2m`2

ff
ˇ

ˇ

ˇ

ˇ

ˇ

dy

¸

. (7.3.5)

We now sum over k ě 1 and analyze each term that appears in (7.3.5).

1. First term: Using A.4 we obtain

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ˆ

2σ ´ 1

σp1´ σq

x1´σ

ppk ` 1q log xq2m`2

˙

ď
2σ ´ 1

σp1´ σq

x1´σ

plog xq2m`2

8
ÿ

k“1

1
`

xσ´1{2
˘k

!
x1´σ

p1´ σq2plog xq2m`3
.

2. Second and third terms: Using A.5 we obtain

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ˇ

ˇ

ˇ

ˇ

ˇ

2σ

x2σ´1 σppk ` 2q log x´ log 2q2m`2
´

21´σ

p1´ σqpk log x` log 2q2m`2

ˇ

ˇ

ˇ

ˇ

ˇ
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`

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ˇ

ˇ

ˇ

ˇ

ˇ

21´σ

pk log x` log 2q2m`2
´

2σ

x2σ´1ppk ` 2q log x´ log 2q2m`2

ˇ

ˇ

ˇ

ˇ

ˇ

!m
x1´σ

p1´ σq2plog xq2m`3
.

3. Fourth term:

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

x1´σ

p1´ σq2ppk ` 1q log xq2m`3
!

x1´σ

p1´ σq2plog xq2m`3
.

4. Fifth term: Using A.4 again we have

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ż x

2
y1{2plog yq2

ˇ

ˇ

ˇ

ˇ

ˇ

B

By

«

1

yσpk log x` log yq2m`2

´
1

x2σ´1 y1´σppk ` 2q log x´ log yq2m`2

ffˇ

ˇ

ˇ

ˇ

ˇ

dy

“

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ż x

2
y1{2plog yq2

ˇ

ˇ

ˇ

ˇ

2m` 2

y1`σpk log x` log yq2m`3
`

σ

y1`σpk log x` log yq2m`2

`
1

x2σ´1

ˆ

2m` 2

y2´σppk ` 2q log x´ log yq2m`3
´

1´ σ

y2´σppk ` 2q log x´ log yq2m`2

˙ˇ

ˇ

ˇ

ˇ

dy

ď

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ż x

2
y1{2plog yq2

ˆ

2m` 2

y1`σpk log x` log yq2m`3

`
2m` 2

x2σ´1 y2´σppk ` 2q log x´ log yq2m`3

˙

dy

`

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ż x

2
y1{2plog yq2

ˆ

σ

y1`σpk log x` log yq2m`2

´
1´ σ

x2σ´1 y2´σppk ` 2q log x´ log yq2m`2

˙

dy

ď

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ż x

2
y1{2plog yq2

ˆ

4m` 4

y1`σpk log x` log yq2m`3

˙

dy

`

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ż x

2
y1{2plog yq2

ˆ

2σ ´ 1

y1`σpk log x` log yq2m`2

˙

dy

`

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ż x

2
y1{2plog yq2

ˆ

1´ σ

y1`σpk log x` log yq2m`2

´
1´ σ

x2σ´1 y2´σppk ` 2q log x´ log yq2m`2

˙

dy

ď

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ż x

2
y1{2plog yq2

ˆ

4m` 4

y1`σppk ` 1q log yq2m`3

˙

dy

`

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ż x

2
y1{2plog yq2

ˆ

2σ ´ 1

y1`σppk ` 1q log yq2m`2

˙

dy
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` p1´ σq
8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ż x

2

plog yq2

y1{2

ˆ

1

yσpk log x` log yq2m`2

´
1

x2σ´1 y1´σppk ` 2q log x´ log yq2m`2

˙

dy

!m

ż x

2

1

yσ`1{2
dy ` p2σ ´ 1q

˜

ż x

2

1

yσ`1{2
dy

¸

8
ÿ

k“1

1
`

xσ´1{2
˘k

`

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ż x

2

ˆ

1

yσpk log x` log yq2m`2

´
1

x2σ´1 y1´σppk ` 2q log x´ log yq2m`2

˙

dy

!

ż x

2

1

yσ`1{2
dy `

8
ÿ

k“1

k ` 1
`

xσ´1{2
˘k

ż x

2

ˆ

1

yσpk log x` log yq2m`2
(7.3.6)

´
1

x2σ´1 y1´σppk ` 2q log x´ log yq2m`2

˙

dy.

We can see that the last sum already appeared in our analysis, in the first, second and fourth

terms treated above. Therefore, an application of (7.3.3) in (7.3.6) concludes the proof.

B.4 For 0 ď β ă 1
2 and x ě 2, we have

ÿ

nďx

Λpnq

n1{2

ˆ

xβ

nβ
´
nβ

xβ

˙

“
2βx1{2 ´ 21{2´βxβ

`

1
2 ` β

˘2
` 21{2`βx´β

`

1
2 ´ β

˘2

1
4 ´ β

2

`O
´

β xβ plog xq4
¯

.

Besides, for 0 ă β ă 1
2 and x ě 2 such that p1

2 ´ βq
2 log x ě c, we have

ÿ

nďx

Λpnq

n1{2

ˆ

xβ

nβ
´
nβ

xβ

˙

“
2βx1{2

1
4 ´ β

2
`Oc

˜

βx1{2

p1
2 ´ βq

2 log x

¸

.

Proof. We will prove the first result. The second result follows using the mean value theorem.

Using (7.3.2) we have that

ÿ

nďx

Λpnq

n1{2

ˆ

xβ

nβ
´
nβ

xβ

˙

“

ż x

2

ˆ

xβ

yβ`1{2
´

x´β

y1{2´β

˙

dy ` 21{2´βxβ ´ 21{2`βx´β

`O

˜

ż x

2

ˇ

ˇ

ˇ

ˇ

ˇ

´p1
2 ` βqx

β

yβ`3{2
´
pβ ´ 1

2qx
´β

y3{2´β

ˇ

ˇ

ˇ

ˇ

ˇ

y1{2 plog yq2 dy

¸

“
x1{2

1
2 ´ β

´
21{2´βxβ

1
2 ´ β

´
x1{2

1
2 ` β

`
2β`1{2x´β

1
2 ` β

` 21{2´βxβ ´ 21{2`βx´β

`O

˜

ż x

2

˜

p1
2 ` βqx

β

y1`β
´
p1

2 ´ βqx
´β

y1´β

¸

plog yq2 dy

¸

. (7.3.7)
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Using the mean value theorem for the function t ÞÑ p1
2 ` tqx

t we find

ż x

2

˜

p1
2 ` βqx

β

y1`β
´
p1

2 ´ βqx
´β

y1´β

¸

plog yq2 dy ď

ż x

2

˜

p1
2 ` βqx

β

y
´
p1

2 ´ βqx
´β

y

¸

plog yq2 dy

!

”

`

1
2 ` β

˘

xβ ´
`

1
2 ´ β

˘

x´β
ı

plog xq3

! βxβplog xq4. (7.3.8)

The desired estimate follows from (7.3.7) and (7.3.8).
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[47] D. A. Goldston, S. M. Gonek, A. E. Özlük and C. Snyder, On the pair correlation

of zeros of the Riemann zeta-function, Proc. London Math. Soc. (3) 80 (2000), no. 1,

31–49.

[48] D. A. Goldston and H. L. Montgomery, Pair correlation of zeros and primes in short

intervals, in Analytic number theory and Diophantine problems (ed. A. C. Adolphson,

J. B. Conrey, A. Ghosh and R. I. Yager), Birkhaüser, Boston (1987), 183–203.
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[54] A. Ivić, The Riemann zeta-function: Theory and applications, Dover Publications,

reprint edition (June 16, 2003).
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