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ABSTRACT OF THE DISSERTATION

How Software Developers Solve Problems by Searching for Source Code on the Web:
Studies on Judgments in Evaluation of Results and Information Use

By

Rosalva Eulogia Gallardo Valencia

Doctor of Philosophy in Information and Computer Sciences

University of California, Irvine, 2012

Professor Susan Elliott Sim, Chair

The large amount of information available on the Web has changed the way people

develop software. Even though looking for source code on the Web is a common

practice among developers, little is known about what motivates developers to look

for source code on the Web, how developers evaluate search results, how they use the

information they find, and how efficient are these Web searches in helping them com-

plete software tasks. We found that looking for source code on the Web is a common

activity for software developers because it helps them solve software development

problems efficiently. Developers evaluate search results by making quick judgments

and examining options in a serial fashion until a good-enough candidate is found.

Information found on the Web is used to build developers knowledge or to guide

their coding. Using a series of empirical studies including online questionnaires, focus

groups, laboratory experiments, and field studies in the US and abroad, we gained

a better understanding of how software developers solve problems by searching for

source code on the Web. We found that 83% of developers performed at least one Web

search during a work day and on average they did 3.6 searches per day. We also found

that 82% of Web searches are done to solve opportunistic problems, such as when

developers need to remember syntax details, to clarify implementation details or fix

xii



bugs, and to learn new concepts. These searches are not planned ahead of time; they

are done as they are needed. Using a naturalistic decision making approach, we found

that developers make rapid judgments to evaluate search results in a serial fashion

to find a good-enough candidate to solve their opportunistic software problems. We

also found that developers are able to successfully solve 63% of their opportunistic

software problems in 4.9 minutes on average by using the information they found

on the Web to build their knowledge or to guide their coding. Results from these

empirical studies have implications for tool designers, researchers, and developers.
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Chapter 1

Introduction

In this chapter, we present the introduction of this dissertation, the thesis statement

that summarizes our results, and our contributions.

1.1 Introduction

Code search is a critical part of software development. A study of software engineering

work practices found that searching was the most common activity for software engi-

neers [57]. They were typically locating a bug or a problem, finding ways to fix it and

then evaluating the impact on other segments. Program comprehension, code reuse,

and bug fixing were cited as the chief motivations for source code searching in that

study. A related study on source code searching by Sim, Clarke, and Holt [54] found

that the search goals cited frequently by developers were code reuse, defect repair,

program understanding, feature addition, and impact analysis. They found that pro-

grammers were most frequently looking for function definitions, variable definitions,

all uses of a function and all uses of a variable.
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The recognition that search is powerful and useful has led to advances in code

search tools. Software developers have needed tools to search through source code

since the appearance of interactive programming environments. It started with sim-

ple keyword search and when regular expressions were added, it became possible

to specify patterns and context [62]. An important improvement was made when

search techniques started using program structure, such as identifiers of variables and

functions, directly in expressing search patterns [1, 43].

Another approach to syntactic search involves processing the program and storing

facts in a database file of entity-relations [9, 32]. Alternatively, the code can be parsed

and transformed into other representations, such as data flow graphs or control flow

graphs, and searches can be performed on those structures [39]. While some of these

ideas have not been widely adopted, searches using regular expressions and program

structure are standard in modern IDEs.

The prevalence and need for search is just as important, if not more, in the

context of Internet-scale code search [13]. Similarly, the mechanisms for specifying

searches and making source code searchable are just as applicable. However, there

are two important differences: scale and the information sought. Conventional code

search is concerned with searching for specific information within the context of a

single project. A project could be very large and even have multiple programming

languages, it would still be a single project with a constrained set of compilation

units. With Internet-scale code search, the challenge is to examine the contents

of many different projects, i.e. thousands of projects and billions of lines of code.

Also, in this context, the software developer is less concerned with finding whether a

variable or function is defined, and more interested in finding functionality, a typical

concern in code reuse. It is also common to use the Web as a giant desk reference.

Gone are the days of programmers keeping thick reference manuals on their desks.

2



Nowadays, they search the Web to find information in order to solve the problems

they encounter while working on software development tasks. A recent study [5] have

found that developers spend 19% of their programming time on the Web.

Looking for source code on the Web is a common practice among developers,

but little is known about what motivates developers to look on the Web, how they

evaluate source code results, and how they use the information they find. To fill this

gap, we studied the phenomenon of looking for source code on the Web with the goal

of answering the following research questions:

• RQ1: What motivates developers to search the Web to find source code to

complete their software development tasks?

• RQ2: What information and strategies do developers use to evaluate search

results when they perform Web searches to find source code?

• RQ3: What strategies do developers use to reuse/use source code found on the

Web?

• RQ4: Are source code searches on the Web efficient to complete software de-

velopment tasks?

• RQ5: What are the implications of our results for tool designers, researchers,

and developers?

To answer these research questions, we conducted a set of complementary em-

pirical studies. We gathered developers’ opinions on how they use Web searches to

complete tasks by collecting their reflections via an online questionnaire and team re-

flections via a focus group. We wanted to observe developers not only talking about

code search but also actually performing code search on the Web. For that purpose,

3



Study Subjects Methods
Online
Question-
naire

26 professional developers Questionnaire with multiple
choice questions

Focus
Group

24 graduate and undergrad-
uate students in Informatics
and Computer Science

Card sorting game
Follow up questions

Laboratory
Experi-
ment

16 graduate and undergrad-
uate students in Informatics
and Computer Science

Complete four program-
ming tasks using pre-made
search results

Field Stud-
ies

12 professional developers
were observed in the US
12 professional developers
were observed in Peru

Observations
Automatically logged Web
searches

Table 1.1: Overview of Empirical Studies

we conducted field studies in companies in the US and abroad, which provided insights

into how developers use code search in the context of other workplace activities. In

addition, we also conducted laboratory experiments to test specific hypothesis where

we needed to control variables.

We conducted our empirical studies with around 90 software developers with a

good balance of professional developers and students: 56% of our participants were

professional developers and 44% of participants were students. We have a represen-

tative number of developers with different levels of expertise, domains of expertise,

cultural backgrounds, and ages. Table 1.1 gives a summary of our empirical studies

including the number of participants and the methods used.

Data collected in our empirical studies has been analyzed separately for each

study and subsequently integrated and compared to other results from the literature.

From this work, we found that looking for source code on the Web is a common

activity for software developers because it helps them solve software development

problems efficiently. Developers evaluate search results by making quick judgments

and examining options in a serial fashion until a good-enough candidate is found.

4



Information found on the Web is used to build developers knowledge or to guide their

coding. Table 1.2 shows a summary of our results for our first four research questions.

This table also shows the mapping between the phases of our model of source code

search on the Web, our research questions, and our results.

1.2 Thesis Statement

The thesis statement of this dissertation is that looking for source code on the Web

is a common activity for software developers because it helps them solve software

development problems efficiently. Developers evaluate search results by making quick

judgments and examining options in a serial fashion until a good-enough candidate

is found. Information found on the Web is used to build developers knowledge or to

guide their coding.

Our thesis statement has four parts. The first part claims that “looking for

source code on the Web is a common activity for software developers because it helps

them solve software development problems.” We make this claim based on results

from our empirical studies, which showed that eighty-three percent of developers

performed at least one Web search during a work day and on average they did 3.6

searches per day. We found that 82% of Web searches are performed with the goal of

finding a solution to an opportunistic problem discovered while working on a software

task. These opportunistic problems arise when developers do not have complete

information to finish their tasks. We identified three main reasons that motivated

opportunistic Web searches: when developers needed to remember syntax details, to

clarify implementation details or fix bugs, and to learn new concepts [5]. Developers

formulate queries to Web search engines to find solutions to these problems in terms

of examples or source code snippets. Developers partially and incrementally learn

5
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more about the problem and the keywords they should use while evaluating search

results. Opportunistic searches were not planned ahead of time; they were done as

they were needed. For the other 18% of Web searches, which were non-opportunistic

searches, developers wanted to find an open source project to reuse.

The second part of our thesis statement claims that “developers evaluate search

results by making quick judgments and examining options in a serial fashion until a

good-enough candidate is found.” This claim is based on our analysis of empirical

evidence using a naturalistic decision making approach that shows that evaluating

search results and finding a solution to developers’ software problems on the Web

did not require a careful comparison of options. Instead, developers made rapid

judgments to evaluate search results serially to find a good-enough solution to solve

their software problems. We found that developers visit the first promising candidate

in less than 10 second for 79% of queries.

The third part of our thesis statement claims that “information found on the Web

is used to build developers knowledge or to guide their coding.” This claim is based

on empirical evidence that shows that developers mainly read the information from

the Web and use it to understand it or to guide their coding. Copy and paste from

the Web was not very common. Choosing between copying and pasting source code

and reading and typing it depends on personal preferences of developers or also on

the problem they want to solve and the information they find on the Web. However,

some developers did not see any distinction between these two practices.

The fourth part of our thesis statement claims that “looking for source code on

the Web helps software developers solve software development problems efficiently.”

We define efficiency in terms of the success of a Web search to help solve a software

development problem and in terms of the time it takes to solve a problem using a

Web search. Our fourth claim is based on our results that show that developers were
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able to successfully solve 63% of their opportunistic software problems in 4.9 minutes

on average using information found on the Web. The time taken to solve problems

ranged between 1 second and 38 minutes. Most of the opportunistic problems that

developers could not solve using Web searches were to clarify implementation details

or find how to fix errors. In these cases, developers did not find anything useful on

the Web or they found a starting point for a solution. After developers gave up on

a Web search, they tended to solve the problem by coding a solution by themselves

or asking for advice to a co-worker. In other cases, developers decided to postpone

dealing with the problem for the moment.

1.3 Contributions

In this section, we list the contributions made with this dissertation in four areas: A)

new model, B) research methods used, C) application of theories, and D) extending

the understanding of source code search on the Web regarding motivations, evalua-

tion of results, use of information, and efficiency of Web searches to solve software

problems.

A) New Model

1. A model to characterize the process of source code search on the Web. No

model for the source code search on the Web process existed before.

B) Research Methods Used

2. First study to understand source code search on the Web based on direct ob-

servations of developers in the workplace. Previous work reported on laboratory

experiments, interviews, surveys, and analysis of system’s logs.
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C) Application of Theories

3. Application of the Opportunistic Problem Solving approach to analyze moti-

vations of developers to look for source code on the Web. First to find an

explanatory theory to understand motivations of developers and identify oppor-

tunistic and non-opportunistic searches.

4. Application of the Naturalistic Decision Making theory and Recognition-Primed

Decision Model of Rapid Decision Making to analyze judgments made by de-

velopers to evaluate search results. First to apply these theories to code search

on the Web and to try to find an explanatory theory to the evaluation of result

in code search on the Web.

D) Extended Understanding of Source Code Search on the Web

5. Empirical evidence that source code search on the Web is more common than

what developers report. First to report this.

6. Empirical evidence that looking for code snippets and open source projects are

two different problems. First to report this.

7. Identified 9 categories of existing tools that support source code search on the

Web and classified these tools on their support for searches to look for code

snippets and searches for open source projects. First to do this classification.

8. Provided implications for tool designers, researchers, and developers about

source code search on the Web. First time implications are given based on

direct observation of developers in the workplace.

D.1) Extended Understanding of Source Code Search on the Web: Motivations

9



9. Confirmed the three motivations reported in the literature[5] to look for source

code on the Web and added a new motivation (looking for open source projects).

First to confirm the three previously reported motivations and added a new cat-

egory.

For each type of motivation to look for source code on the Web:

10. Provided frequency of motivations. It has not been previously reported.

11. Identified 5 categories of search targets and their frequency. First to do this

categorization for each motivation.

D.2) Extended Understanding of Source Code Search on the Web: Evaluation of

Results

12. Empirical evidence that the evaluation of search results to select code snippets

was quick and options were evaluated in a serial fashion until a good-enough

candidate was found. First to report this.

For each type of motivation to look for source code on the Web:

13. Identified 9 relevance cues and their frequency used to evaluate search results.

The literature reported 3 cues (source code, cosmetic features, and official doc-

umentation), we added 6 cues.

14. Identified 4 strategies to evaluate source code search results and provide their

frequency. First to report this.

D.3) Extended Understanding of Source Code Search on the Web: Use of Information

15. Empirical evidence that developers more often use the information they found

on the Web to read it and understand it or to read it and guide their coding than
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to copy and paste it. First to report this. The literature reports that developers

often copy and paste.

For each type of motivation to look for source code on the Web:

16. Identified 5 categories of how developers use found information from the Web

and their frequency. First to do this categorization for each motivation.

D.4) Extended Understanding of Source Code Search on the Web: Efficiency

17. Empirical evidence that developers efficiently solve software problems by search-

ing on the Web. First to study the efficiency of Web searches to solve software

development problems.

For each type of motivation to look for source code on the Web:

18. Provided the ratio of success of Web searches to solve software problems.

19. Provided the minimum, average, and maximum time that took developers to

solve a software problem by performing Web searches or to give up Web searches.

20. Identified 4 reasons that motivate developers to give up Web searches.

21. Identified 5 actions that developers follow to solve problems when they did not

find what they were looking for on the Web.

1.4 Organization

This dissertation is organized as follows. Chapter 2 presents our motivation to do

this work and what has been done so far in this field. Chapter 3 discusses the set of

empirical studies we designed and conducted to better understand the phenomenon
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of looking for source code on the Web. The next three chapters focus on each of the

areas of the search process we are focusing and present results based on our empirical

studies. Chapter 4 presents a classification of the software development problems

that motivate developers to search on the Web. Our results related to the evaluation

of source code search results and the use of suitable results are presented in Chapter

5 and 6 respectively. Chapter 7 discusses the implications of our results for tool

designers, researchers, and developers. Finally, Chapter 8 presents the conclusions of

this dissertation and future work.
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Chapter 2

Background and Motivation

In this chapter, we report on what motivates our work as well as on the current

knowledge on how developers look for source code on the Web from the literature.

Our main motivation to study developers looking for source code on the Web is that it

is a common practice among developers. However, it has not been extensively studied

in the literature. Specifically, we do not know much about the kinds of problems that

motivate developers to look for source code on the Web, and the strategies used to

evaluate search results and to use source code found on the Web. We conducted a

series of empirical studies to gain knowledge on these areas.

2.1 Searching for Source Code on the Web: a Com-

mon Practice

Searching the Web to look for ways to solve software development problems is a very

common practice among software developers. In our field studies, we found that

83% of developers looked for source code on the Web the day they were observed.
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Although this is a common practice among developers, little is known about the

problems that developers want to solve by looking for source code on the Web, as

well as how developers evaluate results and how they use the source code they find.

2.2 Previous Studies

We surveyed the literature to better understand what is the current knowledge about

the phenomenon of looking for source code on the Web. We first present our source

code search process model used to review the literature and then we provide an

overview of the 8 empirical studies found in the literature.

2.2.1 Source Code Search Process

We characterized the source code search process in five stages as showed in Figure 2.1.

We used this model to review the empirical studies that report how developers look

for source code on the Web. Other models in the information seeking, information

retrieval, and information behavior literature influenced this model. Marchionini’s

[37] and Sutcliffe and Ennis’s [60] models influenced ours by their problem solving

approach that motivates the search process. Wilson’s model [66] motivated the in-

clusion of the information use phase.

Identify Software 
Development Problem Select Web Resource Translate and Form 

Need to Web Resource Evaluate Results Use Suitable Results

Figure 2.1: Source Code Search Process

14



2.2.2 Empirical Studies and Methods

There are few empirical studies on how developers look for source code on the Web.

We analyzed the eight studies we found in the literature and we noticed that none

of these empirical studies observed professional developers in the workplace. We

also found that even though these studies provide some initial understanding on

how developers look for source code on the Web, still little is known about how

they evaluate search results and how they use the information they find to solve

development problems. Table 2.1 presents a summary of the characteristics of these

empirical studies including the authors’ names, studies’ goal, research methods used,

participants in the studies, and the tool proposed by researchers to support source

code search on the Web.

Identify Software 
Development Problem Select Web Resource Translate and Form 

Need to Web Resource Evaluate Results Use Suitable Results

Brandt et al.
Umarji et al., Stylos et al., Sim et al.

Bajracharya et al.
Hoffmann et al.

Chen et al., Madanmohan and DeʼChen et al., Madanmohan and Deʼ

Figure 2.2: Empirical Studies for Phases of the Source Code Search Process

We analyzed the research methods used in the empirical studies in the literature.

We found that two studies report on search engines logs [2, 20], two on laboratory

experiments [55, 59], two on questionnaires [8, 65], one on interviews [34], and one on

a search engine log and a laboratory experiment [5]. However, none of them reports

on observations from developers in the workplace.

We also analyzed the phases of the source code search process each study reports

on. Results of this analysis are shown in Figure 2.2. Only three studies report on

how developers use results from the search. One study [5] provides information on
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Author and
Year

Goal Research Methods Participants Tool

Brandt et al.,
2009 [5]

To understand how pro-
grammers use online re-
sources

- Laboratory experiment

- Analyzed queries to
an online programming
portal and examined their
lexical structure, their
refinements, and pages
visited

- 20 participants’ Web use was
observed while building an online
chat room
- A month of queries from 24,293
programmers making 101,289
queries about the Adobe Flex Web
app in July 2008

-

Bajracharya and
Lopes, 2009 [2]

To understand what users
of code search engines are
looking for

Topic modeling analysis of
a year long usage log of
Koders, a code search en-
gine on the Web

User activity log for Koders. 10
million activities from more than 3
million users during the whole 2007
year

-

Sim et al., 2009
[55]

To evaluate the effective-
ness of the search sites
that software developers
use

Laboratory experiment 36 subjects performed an assigned
search scenario on five Web sites to
search for source code and judged
the relevance of the 10 first hits re-
turned

-

Chen et al., 2008
[8]

To investigate the chal-
lenges that development
with OSS components
poses for Chinese software
companies

Survey using a structured
questionnaire

47 developers from 43 small,
medium, and large software com-
panies reported on 47 completed
development projects

-

Umarji et al.,
2008 [65]

To understand how and
why programmers search
for source code on the Web

Online survey with 13
closed-ended questions
and two open-ended
questions

69 participants contributed 58 anec-
dotes about how they search for
source code on the Web

-

Hoffmann et al.,
2007 [20]

To better understand what
developers are searching
for on the Web

Analysis of query logs and
click-through data

Query logs submitted to the MSN
search engine from May 2006. 15
millions queries and 339 sessions on
Java programming

Assieme

Stylos and Myers,
2006 [59]

To understand how pro-
grammers used Web re-
sources to support their
programming activities

Observed three small pro-
gramming projects in Java
and a collection of screen-
captures of Java program-
mers

The projects involved creating a
new GUI Java app, creating an
Eclipse plug-in, and modifying an
unfamiliar open source app

Mica

Madanmohan
and De’, 2004
[34]

To understand the prac-
tices that companies use
when incorporating open
source components

Structured interviews with
project developers in large
and medium enterprises in
the US and India

16 developers from 12 companies in
the US and India who worked on 13
small projects and of short duration

-

Table 2.1: Summary of Empirical Studies in the Literature
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how developers use results when they are looking for code snippets on the Web and

the others [8, 34] comment on the use of information when developers look for open

source projects. However, the emphasis in none of these studies is on how developers

use search results returned by search engines.

Similarly, none of the studies emphasizes how developers evaluate results from

Web searches. There are six empirical studies that provide information related to

how developers evaluate results. Two studies [5, 59] briefly report on the evaluation

criteria used to select source code snippets, and four [8, 34, 55, 65] on the criteria to

select open source projects. We did not find information on the strategies developers

use to evaluate source code on the Web.

Although empirical studies mention some criteria used by developers to evalu-

ate search results and briefly comment on the use of results, none of them provide

information on how the evaluation of results and information use is performed by

developers in the workplace depending on the software problems they need to solve.

We discuss how the results from these empirical studies agree or contradict results

from our empirical studies in the next chapters. Chapter 4 discusses findings for

what motives Web searches, Chapter 5 for how developers evaluate search results,

and Chapter 6 for how developers use the information they found on the Web.

2.2.3 Our Focus

From our review of the literature we learned that little is known about what moti-

vates Web searches, how developers evaluate search results, and how they use the

information they find on the Web. Also, we learned that current knowledge we have

on this topic is not based on direct observation of how developers on the workplace
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use the Web as a resource to solve software development problems. We propose to

fill this knowledge gap by conducting a series of empirical studies that will give us a

better understanding of the phenomenon of looking for source code on the Web from

different but interrelated perspectives. We will emphasize our studies on the phases

of the source code search process where we identified there is a lack of knowledge.

These phases are shown with a white background in Figure 2.3.

Identify Software 
Development Problem Select Web Resource Evaluate Results Use Suitable ResultsTranslate and Form 

Need to Web Resource

Figure 2.3: Phases of the Source Code Search Process Emphasized in Our Approach

In this dissertation, we do not discuss the phase of “select Web resource” because

we found in our online questionnaire that most developers (96%) use general-purpose

search engines such as Google and Yahoo!, followed by blogs which are used by 50%

of developers. Similarly, we do not include a discussion for the “translate and form

need to Web resource” phase because developers mainly use query formulation and

there are empirical studies [2, 5, 20] based on code specific search engine logs that

report on the characteristics of these queries written by professional developers.

In the following chapters, we will explain the series of empirical methods we used

and present our results on the problems that motivate developers to look for source

code on the Web, as well as how developers evaluate search results and how they use

the information they find on the Web.
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Chapter 3

Empirical Studies

In this chapter, we discuss the series of empirical studies we conducted to answer our

research questions to better understand the phenomenon of source code search on the

Web. We discuss the motivation, design, participants, and key results for each study.

At the end of this chapter, we present a summary of these studies. The results of

these empirical studies will be reported in the following chapters.

3.1 Overview

We used a set of complementary empirical studies to understand the phenomenon

of looking for source code on the Web from different but interrelated perspectives.

Figure 3.1 shows how these studies fit together.

We first performed a survey of the literature in order to have an overview of what

we know so far about source code search on the Web. We reported our results from

this study in the previous chapter. In sum, we found that little is known about the

evaluation of results and the use of information found on the Web to solve different
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What do we know about Source 
Code Search on the Web? Literature Survey

Self-Reflection

Developers' Perceptions on Source Code Search on the Web

Group-Reflection

Online 
Questionnaire

Focus Group

Specific for Result Evaluation and 
Information Use in the Lab

Source Code Search on the Web in Action

Source Code Search on the Web 
on the Workplace

Laboratory Study

Field Study

Overview

Focus on Result 
Evaluation and Information 
Use to Solve Software 
Development Problems

Figure 3.1: Overview of Empirical Studies

software development problems. Results from this survey of the literature motivated

our work. For that reason, our next studies are focused on these areas where a better

understanding is needed.

Following the literature survey, we emphasized our studies on the evaluation of

results and the use of information found on the Web. We used two complementary

approaches to study developers’ perceptions and actions in these areas. The first

approach was to gather developers’ opinions on the activity of looking for source code

on the Web by collecting developers’ reflections via an online questionnaire and team

reflections via a focus group. The second approach was to observe developers not

only talking about code search but also actually performing code search on the Web.

For that purpose, we conducted a laboratory experiment to test specific hypothesis

where we needed to control some variables and also field studies in companies in the

US and abroad.
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Data collected from all these studies has been thoroughly analyzed together. The

goal of this analysis was to identify the motivations of developers to look for source

code on the Web, to identify the strategies developers use or not to evaluate results

and use information from the Web, as well as to determine the effectiveness of Web

searches to help developers complete software tasks.

In the following subsections, we explain the motivation, design, participants, and

key results from each of the four empirical studies we conducted. In subsequent

chapters, we will discuss the combined results in detail.

3.2 Online Questionnaire

3.2.1 Motivation

To gather developers’ perceptions on how, when, and what developers look for source

code on the Web, we conducted an online questionnaire on professional developers.

We presented developers with multiple choice questions which options were taken from

our literature survey results. The online questionnaire was the more suitable method

to add quantitative data to our literature survey results and also to get individual

developers’ opinions on this topic.

3.2.2 Design

The questionnaire had 16 multiple choice questions related to the motivations and

search targets of Internet-scale source code search, as well as the tools and selection

criteria used to look for source code snippets, software components, and open source

projects. Appendix B shows all the questions included in the questionnaire. We
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wanted to answer the following questions related to source code search on the Web:

• How often developers perform this activity?

• What are developers trying to accomplish?

• What are they looking for?

• What resources developers use?

• What are the sites that developers use to search for source code snippets, soft-

ware components, and open source projects?

• What criteria are more important for developers when evaluating candidates

for code snippets, components, and open source projects?

3.2.3 Participants

We conducted the online questionnaire between September and November 2010. We

solicited participation at two conferences of professional developers: Agile Open SoCal

(Southern California) and SoCal Code Camp. A total of 26 professional developers

participated in our questionnaire. They have in average 13.8 years of development

experience.

3.2.4 Key Results

We learned that the most common motivation to search on the Web was to find

examples (96%) followed by to remember syntax (65%). We also found that de-

velopers are mainly looking for a few lines of source code (92%) and for tutorials
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and libraries/APIs (69%). We also learned that most developers (96%) use general-

purpose search engines such as Google and Yahoo!, followed by blogs that are used

by 50% of developers. Source code specific search engines are the least used resource

by only 12% of developers. Developers indicated that they do not use them mainly

(79%) because they are not aware that they existed.

3.3 Focus Group

3.3.1 Motivation

Software developers usually work in teams and they tend to express themselves

slightly different when interacting with other developers. To gather developer teams’

perceptions on resources, evaluation criteria, and how they use the information they

found on the Web, we conducted a focus group where developers had to classify dif-

ferent search targets found in the literature survey and answer some questions about

the groups they formed.

3.3.2 Design

We designed a focus group where participants had to first complete a card sorting task

and then reflect on the resources they use to look for source code in each group, as well

as on the criteria used to evaluate search results and how they used the information

found. We recorded the focus group sessions with 2 video cameras and one researcher

was taking notes in all sessions.

Participants completed a card sorting task on different kinds of search targets. We

had the participants work in pairs, because we tend to articulate rules and procedures
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only when there is a breakdown between our expectations and the world and/or when

we want to make our expectations accountable. This study design allowed us to find

regularities in communication about code search targets.

We provided subjects with a stack of 27 index cards that contained code search

targets that could be found on the Web. Table 3.1 lists the code search targets in the

index cards. The types of examples that we included were motivated by the examples

we found in our literature survey. We asked participants to classify these examples

into at least 2 and no more than 8 categories based on similarities or differences. The

focus group sessions lasted between 1–1.5 hours.

1.    Tomcat bug report on improper shutdown 
of AJP connector
2.    A JavaScript tutorial
3.    Apache Struts 2.2.1

4.   Openbravo ERP 
5.   Implementation of diff
6.   Implementation of binary search
7.   Implementation of circular linked list
8.   Implementation of stack
9.   Javadocs for Log4J
10. Javadocs for Java 2 Platform 5.0
11. Code to convert Array to Map in Java
12. Method to validate email address
13.  Article on Java Management Extensions 
JMX
14.  The Standard Widget Toolkit

15.   Class to connect to Oracle using JDBC
16.   Class to represent a bank transaction
17.   Patch for ANT to allow multiple elements 
in a single property
18.   Form post on different behaviors in a 
Thread
19.   OpenMRS
20.   MySQL bug report on strings short than 
defined length
21.  Java.util package
22.  Patch for WebdavServelet
23.  Spring Framework
24.  Apache Commons Collections API
25.  JUnit package
26.  Forum post on how Hibernate binds 
values to prepared statements
27.  MySQL server

Table 3.1: Source Code Search Targets Used in Card Sorting Task

After participants were done with the card sorting task, we asked them about

the criteria that they used for classification and to provide a name for each category.

Then, for each category, we asked questions to gather information on:

• What resources/tools do developers use to look for each group?

• How do developers formulate queries for each group?
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• What do developers consider to be a good candidate for each group? What

characteristics do developers use to assess a candidate is good?

• How using or reusing source code from each group is different?

• Would developers classify each group as Information or Resources?

3.3.3 Participants

We ran a total of 12 sessions with 24 participants: 22 graduate and 2 undergraduate

computer science students. We placed the undergraduate students in the same session.

In our group of participants, 19 were men and 5 were women. There were between 20

and 49 years old. They had between 1 and 15 years of experience developing software.

Twelve participants indicated that they look for source code on the Web a couple of

times per week, seven almost every day, three several times per day, and two less than

once per month. Twenty one participants indicated that they use Google to look for

source code on the Web. Participants received $20 as compensation for their time.

3.3.4 Key Results

We learned that developers typically classified searches in different groups such as:

searches for source code snippets, open source projects, and documentation. Devel-

opers mainly use Google, Yahoo!, or Bing as resources to search for source code, but

asking to other people for recommendations of source code to use or sites to visit was

also mentioned by our participants.

Regarding the evaluation criteria, we found that the used criteria vary depending

on the size of the search target. The most important criterion in all cases was that the
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source code should comply with the functionality developers need. When developers

were looking for code snippets they cared about the appearance of the Web page,

for example they preferred a page that did not have many pop-up windows. The

source of information also matters, for example a page from Java Sun or IBM will be

trusted. Developers preferred source code over pseudo code. Also, when consulting

forums, developers also checked other people’s comments about a piece of source code,

and they often clicked first candidates from very well known forums such as Stack

Overflow.

When developers were looking for documentation, they cared about how current

is the information, clarity of organization and explanation, and also if it included

source code. The source of the documentation also matters. We found that looking

for open source projects was not very common among developers, which made it

difficult for our participants to articulate what criteria was important to them in this

case.

Regarding how developers use the information, we also found differences between

search target sizes. When developers were looking for source code snippets, we found

mixed answers here. Some developers preferred to copy and paste and try the source

code, while others preferred to understand a piece of code and then write it by them-

selves. For documentation, they mainly read the information and they tried the

examples included in it. For open source projects, developers downloaded the com-

ponents and tried it, but these type of searches are not common.

We also collected many anecdotes from developers about instances when they

search for source code. In some cases, the index cards served as motivation for

them to tell us about stories and anecdotes about their searches, mentioning specific

problems, resources, tools, and issues they had while looking for source code on the

Web.
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3.4 Laboratory Study

3.4.1 Motivation

From the online questionnaire and focus group, we gathered developers’ perception

on how they evaluate search results and how they use the information they found

on the Web. However, commonly there is a mismatch between what people report

doing and what they actually do. For that reason, we decided to conduct a labora-

tory study where developers could evaluate source code search results in a controlled

environment, while trying to solve a software development problem.

3.4.2 Design

We designed a laboratory study where developers were asked to complete software

development tasks using hand-built search results so that we will answer the following

research questions:

• What information do developers use when they evaluate source code results

from the Web?

• What is the relationship between the frequency of information use and its per-

ceived usefulness?

• What is the relationship among the frequency of information use, the likelihood

of selecting the best match, and the time to complete a task?

• What strategies do developers use to integrate source code found on the Web?
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The experiment session was organized in three stages: training, experiment, and

debriefing. We recorded audio and screen activity while participants completed all

the stages of the study. In the next subsections, we will explain each of these stages.

Training

We started the session with a warm-up task. The goal of this task was to famil-

iarize participants with the experiment settings, the procedure for each task, and the

procedure of thinking aloud. Participants were given the task to find a source code

snippet that implements a binary search in Java. We provided a set of three search

results with one obvious best match that had the same signature as the method pro-

vided. A simple copy and paste, and rename of a variable were enough to make this

match work. We also provided a print out of how to run a JUnit test case and a

tutorial to add an external jar in Eclipse.

Experiment

We gave participants a written description of the common context for all the tasks.

This description includes the fictitious company, characteristics of the software team,

and a brief explanation of the software system being developed. All tasks involved

modifications to a CRM (Customer Relationship Management) system that tracks

the professors and universities that currently use the various textbooks that Tome

Textbooks publishes.

Participants performed four tasks (see Table 3.2) and were given a maximum

of 15 minutes to complete each of them. We created these four tasks based on the

categories of a previous code search experiment [55]. The motivation for all of the

tasks was to find a piece of source code to reuse in order to solve an implementation

problem. We had two tasks where the source code target size were blocks and the

other two were subsystems [65]. In each group, we included one easy task and one
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Task Source Code Target Target
Size

1 Find a library to parse a CSV (comma-separated val-
ues) file and place the data into a list of Strings.

Subsystem

2 Find a library to compare two text files and show the
lines that are different.

Subsystem

3 Find a small snippet of source code that will validate
email addresses. Valid and invalid addresses were in-
cluded in test cases.

Block

4 Find a small snippet of source code that will convert
a String date from one time zone to another one.

Block

Table 3.2: List of Tasks in Laboratory Experiment

difficult task.

For each task, we provided a problem description, a software system to modify,

and a JUnit test case. Participants were given a set of search results and asked to

select the best match to complete the task. Then, they used the selected match to

modify the software system to pass the given test case.

Every subject received the same set of 10 results, but in random order, on a pre-

made results page. We used a random order, because we did not want subjects to

automatically go to the first result. By giving each subject the same results, we can

focus on their evaluation process, without the influence of their ability to form queries.

These 10 results were taken from the Web and were chosen with the aim of having

one best matching result based on the requirements given in the task description, the

test cases, and the method signature. We also included four results that partially met

the requirements, four results that were related to the requirements but were only

partial solutions, and one that was not related.

Participants performed two tasks to find and reuse components or subsystem, one

with search results in the baseline interface and the other in the treatment interface.

Similarly, search results were shown using the baseline interface for one task to find
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code snippets and using the treatment interface for the other task. The search results

in the baseline interface included for each match: title, description, and links to

source code. The treatment interface included the same information as the baseline

interface plus technical cues (number of lines of code, number of classes, and number

of methods) and social cues (number of favorites, number of copies, and percentage

of positive reviews).The order of the tasks and the interface were randomized for each

participant.

Debriefing

We debriefed subjects at the end of each task and at the end of the experiment.

At the end of a task, subjects were asked to rank the usefulness of the information

shown using a scale of 1 (low) to 5 (high). They were also asked about the process

used to make their final selection. After participants finished all the four tasks, we

interviewed them about how the information shown in the baseline and treatment

interfaces affected their evaluation process.

3.4.3 Participants

The 16 participants were computer science students (13 graduate and 3 undergradu-

ate) between the ages of 23 and 39. Of these, 13 were men and 3 were women. They

had 1–11 years of experience programming in Java. All of them have worked with

Eclipse at least once. Six participants indicated that they look for source code on the

Web almost everyday, four a couple of times per week, four less than once per month,

one several times per day, and one never. Participants received $20 as compensation

for their time and additional $10 if they completed all the tasks successfully.
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3.4.4 Key Results

We learned that participants primarily looked at the title, links to source code, and

description. Even when participants have access to additional social and technical

information, they still relied on these three. The social and technical cues were used

only 12.5–50% of the time.

The information used most often was not perceived to be the most useful. For

instance, the title was used 100% of the time, but had a Usefulness of only 3.8 out

of 5. The opposite was true as well; information that was perceived to be very useful

was used infrequently. For instance, the number of uses had a Usefulness of 4.4, but

was used only 18.8% of the time.

We found three patterns of relationships among use of a metric, frequency that

a match was selected correctly, and the time taken to complete the task. The two

most frequently used metrics, percentage of positive reviews and number of lines of

code, were related to lower rates of correct selection and longer completion times.

The next two metrics that were used moderately frequently, number of favorites and

number of copies, were associated with better rates of correct selection, but longer

completion times. The final two metrics, number of classes and number of methods,

were used infrequently, but were related to both better rates of correct selection and

shorter completion times. It is not clear whether these differences can be attributed

to properties of the information or characteristics of the participants who chose to

use the information. Further research could explore a possible relationship between

personality traits or background knowledge and evaluation strategies. A detailed

explanation of the results from this study have already been reported [14].
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3.5 Field Studies

3.5.1 Motivation

To collect data on Web searches in situ, that is, within the context of the work being

done, we conducted field studies in software companies in the US and abroad. Con-

ducting field studies in companies allows researchers to see the phenomenon of source

code search on the Web when it arises naturally and not motivated by researchers.

In a field site, researchers can observe the context of the search including: What

motivated developers to do a Web search? Were other people involved in the search

process? Why developers visited some results and not others? What were the cues

that they were following to evaluate candidates? How do they use what they found

on the Web? Those are some of the answers that can be better answered by observing

developers in the workplace, in their own environment, while they work in real world

problems under time constraints and stress.

3.5.2 Design

We conducted a field study of 24 developers in three software development companies.

We observed them as they worked with particular attention to how and when they

searched for source code on the Web. We augmented these observations with fine-

grained data collected using a Web browser extension.

Companies

We had three field sites, one in Peru (Novatronic) and two in Southern California

(Health Connection and AppFolio).
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Novatronic is a consulting company with 64 employees that develops transactional

software. Its clients are banks, telecommunication companies, the government, and

other firms located throughout the Americas. The company has achieved CMMI level

3 and its processes are certified as ISO 9001-compliant. We contacted the owners

of Novatronic who agreed to participate in the study. One of the owners and the

company’s product managers identified 25 developers who were coding at the time

of the study. Among these 25 developers, we randomly selected 12 developers to

observe. Developers did not receive any compensation for their participation.

Health Connection is an open source health information technology company; its

system is used to securely exchange health information between health-care organi-

zations such as hospitals, clinics, and laboratories. The company has approximately

45 employees working on various products. We contacted a Senior Software Engineer

from Health Connection who agreed to participate in the study. He selected 7 devel-

opers, and 4 other developers volunteered to be observed. Developers did not receive

any compensation for their participation. We use the name Health Connection as a

pseudonym for this company to protect its confidentiality.

Finally, we also conducted one observation at AppFolio, which develops property

management software. This company develops a web-based application to manage

rental properties, such as apartment complexes. The company has around 120 em-

ployees. We contacted the Director of Software Engineering who agreed to participate

in the study. He identified one developer to be observed. The developer we observed

did not receive any compensation for his participation.

Methods

We shadowed each developer for one day of work. We took notes about the

activities they were performing and time stamped switches between activities. We
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paid particular attention to Web searches. After they performed a search, we asked

some questions to understand the goal of the search, expectations for the search, how

the candidates were evaluated, and the use of the information.

At the end of the day of observations, the researcher conducted a short debriefing

interview. The participant was asked to reflect on the activities performed and the

patterns of searches on the Web.

Because the searches were conducted so quickly, we developed an extension for the

Chrome Web browser to collect data. The extension automatically recorded searches

as well as the results developers visited after each search. Data collected included the

search engine used, terms in the query, and time of query. For visited results, the

extension recorded: the number of result page, the position of the visited result, the

time of visit, the title, and the URL. A subset of participants in the US (10) installed

and used the Chrome extension the day they were observed.

We analyzed the data inductively and iteratively [33]. We used open coding

to identify categories, sometimes revisiting data to apply new categories. We used

axial coding to relate different categories to each other to create descriptions. The

names of participants that we use in this document are pseudonyms to protect their

confidentiality.

3.5.3 Participants

Table 3.3 shows a summary of our participants and companies. We observed 12

developers at Novatronic, 11 men and 1 female. Eleven participants completed the

background questionnaire. They were between 23 and 38 years old and had 1–15 years

of programming experience. They use the following programming languages at work:
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Java, C/C++, SQL, Visual Basic, and JavaScript. They used these IDEs: Netbeans,

Eclipse, Visual Studio, and Notepad++ (for C). Five participants indicated that they

look for source code on the Web a couple of times per week, four almost every day,

one several times per day, and one less than once per month.

Type of Software

# of Employees

# of Developers 
Observed

Years of 
Programming 
Experience of 
Participants

64

12

1-15

Programming 
Languages Used 
by Participants

Java, C/C++, SQL, Visual 
Basic, Java Script

AppFolioHealth Connection*Novatronic

Transactional software Open source software to 
exchange health information

Property management 
software

45 120

111

2.5-13 2.5

Java, SQL, JSP, 
JavaScript Ruby

Country Peru USA USA

*Health Connection is a pseudonym

Table 3.3: Summary of Participants and Companies in Field Studies

We observed 11 software developers, all men, from Health Connection. Developers

were between 23 and 36 years old with 2.5–13 years of programming experience. They

use the following programming languages at work: Java, SQL, JSP, and JavaScript.

The IDEs that they used were Netbeans, Intellij IDEA, and Eclipse. Five participants

indicated that they look for source code on the Web almost every day, three a couple

of times per week, and three several times per day.

One participant was from AppFolio. He has 2.5 years of work experience. He

uses TextMate to code in Ruby at work. He indicated he looks for source code on

the Web several times per day.
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3.5.4 Key Results

We observed a total of 87 distinct Web search sessions, 34 from Peru and 53 from

the US. We analyzed these searches and found that performing Web searches is a

common practice among developers to solve software development problems. We

also found that the length of Web searches depended on the kind of problem they

want to solve. Finally, we observed that judgments to select promising candidates

occur quickly, in less than 10 seconds for more than three-quarters of the searches.

A detailed presentation of our results from observations in Peru have already been

reported [15].

Eighty-three percent of developers we observed performed searches on the Web to

help them solve software development problems. Only four developers out of twelve

we observed did not perform any searches related to software development, three in

Peru and one in the US. In the US, a developer who was an expert in JavaScript

did not perform any searches while coding the whole day in JavaScript. He did not

need to consult for any implementation detail and when he had exceptions he knew

how to solve them. The other three developers in Peru had different situations and

coding was not the main activity during the day. In one observation, a developer was

running around trying to solve a problem with a system in production, the other was

writing documentation for a system, and the last one was working his last day at the

company.

Developers perform Web searches to solve software development problems. We

identified four types of problems. The first three (remember, clarify, and learn) are

taken from Brandt et al. [5]. To these, we added a fourth: finding tools or open

source projects. Developers use the Web to remember syntax details or facts. Other

times, developers have an idea of what they want to implement but they do not know
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how to actually do it in a programming language, or sometimes they have an error

in their program and they do not know how to fix it. In this case, developers use

the Web to clarify implementation details. Developers also use the Web to learn new

concepts and to find open source projects to reuse.

The length of the Web searches varied depending on the type of problem devel-

opers wanted to solve. Searches for remembering/fact finding had the lowest median

time and the smallest distribution. The median of searches for clarification is higher

than for remembering but close to the median for learning. Searches for open source

projects and software tools had the second highest median, but the most skewed dis-

tribution, and the longest tail. In other words, these kinds of searches typically took

the same amount of time as searches in support of learning, but many of them could

take a very long time. One participant spent an entire day looking for an open source

project, and still was not finished with the task.

Judgments to choose a promising candidate are quick. Developers visit the first

promising candidate in less than 10 seconds for 79% of queries. In addition, develop-

ers have a hard time verbalizing why they chose promising candidates. They make

decisions so quickly that they do not even think about how they do it.

3.6 Summary

Table 3.4 presents a summary of the series of empirical studies we did to better

understand how developers look for source code on the Web. Specifically, what kind

of development problems they can solve using the Web as a resource, and also how

they evaluate search results and how they use information they find on the Web.
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Study Goal Participants Design Research Questions
Online
Question-
naire

Gather individ-
ual developers’
perceptions

26 professional
developers

16 multiple choice
questions

• How often developers perform source code
search on the Web?

• What are developers trying to accomplish?

• What are they looking for?

• What resources developers use?

• What are the sites that developers use to
search for source code snippets, software
components, and open source projects?

• What criteria are more important for de-
velopers when evaluating candidates for
code snippets, components, and open
source projects?

Focus
Group

Gather develop-
ers’ perceptions
and articulation
while working in
a group

24 participants.
22 graduate
students and
2 undergrad-
uate students
in Informatics
and Computer
Sciences

Card sorting
game and follow
up questions in
groups of two
developers for
1–1.5 hours

• What resources/tools do developers use to
look for each group of search targets?

• How do developers formulate queries for
each group?

• What do developers consider to be a good
candidate for each group? What charac-
teristics do developers use to assess a can-
didate is good?

• How using or reusing source code from
each group is different?

• Would developers classify each group as
Information or Resources?

Laboratory
Experiment

Observe devel-
opers actions to
evaluate search
results and use
information

16 participants.
13 graduate
students and
3 undergrad-
uate students
in Informatics
and Computer
Science

Complete four
programming
tasks using pre-
maid search
results so that
JUnit test cases
will pass. They
had 15 min to
complete each
task

• What information do developers use when
they evaluate source code results from the
Web?

• What is the relationship between the fre-
quency of information use and its per-
ceived usefulness?

• What is the relationship among the fre-
quency of information use, the likelihood
of selecting the best match, and the time
to complete a task?

• What strategies do developers use to inte-
grate source code found on the Web?

Field Stud-
ies

Observe devel-
opers performing
code searches and
gather automat-
ically collected
searches in the
workplace

24 professional
developers were
observed

Observations and
automatically
collected searches • What kinds of problems motivate develop-

ers to look for source code on the Web?

• What information and strategies do devel-
opers use to evaluate source code results?

• What strategies do developers use to
reuse/use source code found on the Web?

• Are source code searches on the Web ef-
ficient to complete software development
tasks?

Table 3.4: Summary of Empirical Studies
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Chapter 4

Software Problems that Motivate

Web Searches

Developers are mainly using Web searches to opportunistically solve software devel-

opment problems (82% of Web searches). Opportunistic searches are ad hoc and

are done to remember syntax details, clarify implementation details or fix bugs, and

learn new concepts. On the other hand, non-opportunistic searches (only 18% of

Web searches) are done following a systematic process and are performed to find

open source projects.

Analyzing Web searches from the perspective of opportunistic problem solving

helps us understand that developers’ searches on the Web are motivated by the soft-

ware problems that they want to solve. These problems define the search targets

that developers are looking for. Using this perspective also helps us see that searches

for snippets of code and searches for open source systems are two different types of

searches.

In this chapter, we explain the characteristics of opportunistic searches as well
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as the characteristics of non-opportunistic searches. We also discuss the insights

that come from understanding Web searches from an opportunistic problem solving

perspective. Finally, we provide a summary of the chapter.

4.1 Opportunistic Searches

Robillard [49] argues that developers use a mixture of systematic and opportunistic

problem solving to complete their tasks. Developers use a systematic approach when

they have the knowledge for completing a task and can follow a well-structured plan.

In contrast, developers use an opportunistic approach when they need to find missing

information for completing software development tasks. For that activity, they incre-

mentally collect knowledge when the opportunity arises. Opportunistic approaches

do not follow structured plans but instead happen ad hoc.

Opportunistic problem solving originally helped explain software engineering in

general [49]. Here, we are applying it to Web search as an aspect of software devel-

opment, where developers want to solve problems.

We argue that developers mainly use Web searches for opportunistic problem

solving. In the next subsection, we show our results for each of the characteristics of

opportunistic problem solving: Web search is used to explore further, knowledge is

partially and incrementally gathered, and Web search does not follow a well-planned

process.
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4.1.1 Web Search is Used to Explore Further and Find Miss-

ing Information to Complete Software Development

Tasks

Developers often do not have all the information they need to complete their soft-

ware development tasks, and this is why they search the Web. They are looking for

information that will help them solve their software development problems.

In our field studies, we identified four types of problems using the classification

proposed by Brandt [5]. First, developers need to remember syntax details or find a

fact. Second, they need to clarify how to implement functionality given that they have

a high level understanding of how to implement it. Third, they need to learn some

concepts. Finally, developers need to look for tools or open source projects. This last

classification was not reported in Brandt’s study. Figure 4.1 shows the frequency of

each type of problem. We identified that the first three types of problems fit into

opportunistic problem solving, but not the last one. Searches done to find an open

source project to reuse does not meet all the three characteristics of opportunistic

problem solving. For that reason, searches for open source projects will be discussed

in the next section.

Figure 4.1: Problems that Motivate Web Searches
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The length of the Web search session varied depending on the type of problem

developers wanted to solve. We obtained this result by looking at the distribution of

the duration of each kind of search. Our definition of a search session can be found in

Appendix A. Figure 4.2 shows a box and whisker plot for the length of the searches

by the type of search performed. Each box in the graph shows the range of 50% of

the data and the black dot shows the median. The whiskers above the boxes show the

25% of searches that took the longest time and the whiskers below the boxes show

the 25% of searches that took the shortest time. Triangles show the outliers (three

additional outliers have been omitted).
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Figure 4.2: Length of Web Searches by Type of Software Problems

Here, we include a description for each type of software problem identified for
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opportunistic searches. Descriptions are accompanied by quotations from developers

that exemplify the searches our participants performed in field studies or talked about

in focus groups. We use pseudonyms to identify our participants in field studies.

Remembering/Fact Finding Developers know exactly what they are looking for

when they perform Web searches to remember syntax details or find facts. In

these cases, developers can recognize the answer as soon as they see it.

Developers perform searches to remember syntax details of commands or pa-

rameters of a method. As Bob, a developer in our field studies, mentioned

when he did one of these searches to remember the syntax of a SQL command:

“I always forget how to do this.” Developers use the Web as memory aid [5].

Developers do not bother remembering information which they know is on the

Web, as indicated by a participant in focus group 11: “When I look for tutorials,

I search for the name of a method in the documentation and read examples. It

is more understanding. I will not care about remembering because I know it will

be available there.”

Developers also know exactly what they are looking for when they are trying

to find facts. Sometimes, they need specific pieces of information. For example,

the goal of one developer was “to find what was the last version of HtmlUnit.”

Twenty five percent of the searches we observed are to remember or to find facts

as shown in Figure 4.1. Developers know exactly what they are looking for and

they recognize it easily. These searches had the lowest median time and the

smallest distribution as seen in Figure 4.2. Query refinements are uncommon

in these cases. Developers tend to visit few results and in some cases they find

the answer just by looking at the search results.

Clarifying Often developers have a high level understanding of what they want to

implement, but they do not know precisely how to do it. They are looking for
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examples of how to use APIs or they are looking for solutions on how to fix

bugs or exceptions. One instance of this type of search is when Michael needed

to send messages to a JMS queue from his php application so that the messages

will appear in the log. When we asked him about his goal for the search, he

indicated he wanted to “find an example of how to have a php application send

JMS messages to a queue so they will be logged.” Another instance is when

Gregory was “trying to find out any issue or forum post about the exception

org.eclipse.jetty.util.log EOF.”

Developers have a rough idea of what they want, but are not sure what would

be a good answer. In such cases, it is hard for developers to create effective

queries. They need to evaluate more results and they reformulate queries as

they learn from the search results that they evaluate. These searches had a

median time longer than the one for remembering but smaller than the one to

learn new concepts as seen in Figure 4.2. Forty three percent of the searches

we observed fall in this category.

Learning Developers need to learn new concepts. Once, Joaquin needed to learn

about “0S4690 v6.0” because he was asked to implement an application for

that operating system, which was unfamiliar to him. For searches in support of

learning, developers mainly looked at explanations and examples or tutorials.

Fourteen percent of the searches observed fall into this category. Developers

spent more time reading the documentation than evaluating the relevance of

results. They did many query reformulations and visited many results. These

searches had the longest median time as seen in Figure 4.2.
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4.1.2 Knowledge is Partially and Incrementally Gathered while

Developers Search on the Web

Developers learn more about the problem they want to solve and how to formulate

effective queries when they are engaged in a Web search session. Developers use query

reformulation to refine their searches based on the partial knowledge they collect from

previous queries in a Web search session. When developers examine search results

from queries, they sometimes find the solution to their problems. In other cases,

the search results help them identify keywords that are more appropriate to describe

what they are looking for.

In our field studies, developers used query reformulation for 50% of the searches

to learn new concepts and for 35% of the searches when they were trying to clarify

implementation details or fix bugs. Table 4.1 shows the number of query reformu-

lations done for searches to solve each type of problem. The first column shows the

number of searches with 0 refinements. That means, developers only entered 1 query

for those searches. The second column shows the number of query reformulation

between one and seven. In this case, developers performed between 2–8 queries. In

the third column, we show the searches that did not include query reformulation be-

cause developers visited bookmarks or links directly. In the last column, we show the

searches for which we did not have information about query reformulation.

One instance of a search that involved query refinement was when Manfred was

looking for a solution to solve an exception he was having when he was using Htm-

lUnit. He entered these 3 queries:

Query 1: htmlunit “The data necessary to complete this operation is not yet available”

Query 2: htmlunit doScroll

Query 3: htmlunit “The data necessary to complete this operation is not yet available”
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Remembering/
Fact Finding

Clarifying

Learning

Looking for Open 
Source Projects or 

Software Tools 

0 1-7

13 5

15 14

6 6

14 2

SUBTOTAL 14 (88%) 2 (13%)

4 0

3 5

0 0

0 0

0 (0%) 0 (0%)

Query 
Reformulation

Bookmark No info

SUBTOTAL 34 (48%) 25 (35%) 7 (10%) 5 (7%)

TOTAL 48 (55%) 27 (31%) 7 (8%) 5 (6%)

Opportunistic
Searches

Non-Opportunistic
Searches

Table 4.1: Query Reformulation by Type of Software Problems

doscroll

In the first query, Manfred entered the name of the library and the error message

he received. After examining some results, he learned that this problem could be

related to the “doScroll” method, for that reason he replaced the error message for

the name of the method in the second query. Then, he examined the results and

did not find the answer the was looking for, so he tried to include both the error

message and the name of the method. This example shows that developers collect

partial knowledge from the search result evaluation they perform during a Web search

session.
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4.1.3 Searches on the Web do not Follow a Well-Planned

Process

Web searches happen in an ad hoc manner and they happen very often. Typically,

developers do not start their day by planning the Web searches they are going to

perform during the day. In fact, they do not know if they will even perform searches

in a given day or how many they will need. The number of searches they will perform

depends on the problems they would need to solve during the day.

Also, if Web searches were a planned process, people would be more aware of the

searches they perform. However, we found a mismatch between what people reported

doing and what people actually did.

Based on our observations of developers in field sites, 83% of them perform many

searches on the Web during a day of work to help them solve software development

problems. However, when asked in all our surveys, only 45% of developers reported

that they perform searches almost everyday or several times per day.

Twenty developers we observed performed searches on the Web to help them solve

software development problems. Only four developers out of the twenty four that we

observed did not perform any searches related to software development (three in Peru

and one in the US). One developer who was an expert in JavaScript did not perform

any searches while coding the whole day in JavaScript. He did not need to consult for

any implementation detail and when he had exceptions he knew how to solve them.

The other three developers had different situations and coding was not the main

activity during the day. In one observation, a developer was running around trying

to solve a problem with a system in production, the other was writing documentation

for a system, and the last one was working his last day at the company.
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Among those who did search the Web, they performed on average 3.6 searches

per day (σ = 3.4), with a low of one search and a high of 15. Web searches were an

important and integral part of their day. One developer at Health Connect, Brian,

said: “I could not code without Google.” He performed 7 searches the day he was

observed.

Figure 4.3 shows a pie chart with the frequency of self-reported Web searches that

developers perform to help them in their software development tasks. This graph in-

cludes data reported from 88 developers who participated in our online questionnaire,

focus group, laboratory experiment, and field studies. Two developers did not provide

this information.

Figure 4.3: Frequency of Self-Reported Web Searches in Our Empirical Studies

Most developers (38%) indicated that they perform Web searches to help them

solve development problems only once or a couple times per week. Thirty one percent

of developers look for source code on the Web almost everyday and 14% several times

per day. Only one developer indicated that he never performs searches on the Web,

he prefers to write his own code because he cannot trust what is on the Web.

This discrepancy between what we observed and what developers reported is likely

influenced by two factors. First, doing Web searches is such an ubiquitous action for

developers that they do not notice when they perform Web searches. This was clear
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when we asked one of the developers about the 4 searches he just did and he replied:

“Really? Four searches? I remember doing maybe only one.”

Second, the number of searches that developers do is not the same everyday and

it depends on the problems they are solving on a given day. Developers mentioned

that they do more searches when they need to learn something new or when they have

to deal with a problem that they have not faced before. In contrast, days in which

developers “just code”, as they said, have a low probability of performing searches

unless an exception is raised in their code.

4.2 Non-Opportunistic Searches

Not all Web searches done by developers meet the three characteristics of opportunis-

tic searches. When developers look for open source projects, Web searches are mainly

to find software to reuse as is, not to find code snippets or explanations. Also, Web

searches are not ad hoc but instead they follow a methodical process.

4.2.1 Web Search is Used to Find Open Source Projects to

Reuse As-Is

Web searches are non-opportunistic when developers are trying to find open source

projects to reuse. When they do this type of search, they are looking for software

to reuse as-is and developers do not intend to make any changes to this open source

projects or software tools. In this case, developers are not looking for code snippets

or explanations, but instead for complete systems to reuse.

Looking for Software Tools or Open Source Projects Developers look for open
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source projects that they can reuse and integrate into their current projects. For

example, Oscar was looking for an open source project to do data mining of logs

and to manage alerts. In other cases, developers need to find some tools to sup-

port their programming tasks. For instance, Malcom was trying to find a tool

to do performance testing of Java programs. In this type of search, developers

look at many alternatives and evaluate each of them very carefully according to

criteria such as functionality, cost, popularity, and support. Unlike opportunis-

tic searches, this type of search often requires multiple search sessions, each

requiring evaluating different options.

Searches for open source projects and software tools have the second highest

median in search time, but the most skewed distribution, and the longest tail as

seen in Figure 4.2. In other words, these kinds of search sessions typically took

the same amount of time as search sessions in support of learning, but many of

them could take a very long time. Also, developers often required more than one

search session to solve the problem of finding a suitable open source project to

reuse. One participant spent an entire day looking for an open source project,

and still did not finish the task.

4.2.2 Knowledge is Gathered for Criteria to Evaluate Open

Source Candidates

When developers evaluate open source projects, they do Web searches to find infor-

mation related to each of the evaluation criteria that they use to compare them.

When we observed Oscar, he did Web searches using the name of the systems

that he was evaluating. He did a few query reformulations, as seen in Table 4.1. For

each candidate system, he read information related to the architecture of the system,
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requirements for installation, cost, and support, which were the evaluation criteria he

was using. He looked for the same information for all the systems he evaluated.

4.2.3 Searches Commonly Follow a Planned Process

Oscar, a developer we observed, knew at the beginning of the day that he would be

doing many Web searches to find an open source project to do data mining of logs

and to manage alerts. At the beginning of the day, Oscar did a Web search to find

information about the type of software he was looking for. He found an article that

provided a list of this type of open source systems. During the day, he methodically

followed that list to search for information related to each open source system. For

each system in the list, he did a Web search using the name of the system for the

query.

4.3 Discussion

We found that 82% of Web searches are used for opportunistic problem solving. These

searches are done to remember syntax details, to clarify implementation details or

fix bugs, and to learn new concepts. In opportunistic searches, developers do not

use a systematic or well-planned engineering process where they carefully consider

candidates to solve a problem, but instead they partially and incrementally collect

knowledge to find missing information as opportunities arise.

Using an opportunistic problem solving approach helped us to have a clear under-

standing of what motivates Web searches, to identify common search targets for differ-

ent motivations, to differentiate searches for code snippets and open source projects as

two different problems, and to classify tools for opportunistic and non-opportunistic
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searches.

4.3.1 Understanding of What Motivates Web Searches

We look at Web searches not just as entering a query, but instead we look at them in

a more ecological fashion by studying their context as well as what happens before,

during, and after the search. By opening up our perspective from querying to problem

solving, we can more clearly identify that what motivates searches are the software

problems developers want to solve, and that these problems define the search targets

they are looking for.

In the literature, we did not find a clear statement on what motivates Web

searches. In some cases, the motivation was given in terms of search targets, such

as find examples, but it was not clear why developers were looking for examples.

In other cases the motivation was given in terms of the purpose of the search, for

example, to reuse source code, but it was not clear why developers wanted to reuse.

We are interested in understanding what motivates developers to do searches

on the Web. For that reason, we first conducted a review of the literature to find

out what has been reported. Then, informed by results from the literature review

we conducted an online questionnaire to find out what motivates developers to do

Web searches and what they are looking for. Finally, we conducted field studies to

observe searches in situ, putting emphasis on the context of the search, including

what happens before and after the search. Here we synthesize our results.

When we compared results from our online questionnaire (whose options were

taken from the literature) and field studies, we did not find a perfect match between

the motivations identified, as seen in Figure 4.4. This mismatch is due to the fact that
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motivations identified in the online questionnaire were in terms of software problems

and search targets, but the motivations identified in the field studies were in terms

of software problems, which define the search targets. There are two categories from

the online questionnaire that do not match with the categories from our field studies:

1) find examples and 2) reuse source code. Using the opportunistic problem solving

perspective, we found that developers look for examples when they want to remember

syntax details, they want to clarify implementation details or fix bugs, and they want

to learn new concepts. Developers want to reuse source code to solve any of the

problems identified in our field studies.

Figure 4.4: Comparison of Results from Online Questionnaire and Field Studies for
Motivations behind Web Searches

In our literature review, we found that some empirical studies [5, 55, 59, 65]

report on the motivation and also the search target developers expect to find, but

some studies [2, 20] only report on the search target. None of these studies report on

observations of developers in industry.

We analyzed the different motivations and search targets reported by empirical

studies. Based on this analysis we found that developers are looking for information

for seven categories of reasons:

R1. To reuse source code as-is.

R2. To find examples of usage for GUI widgets or API/libraries.
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R3. To remember syntactic details or frequently used functionality.

R4. To find examples to clarify how to implement functionality in a specific

language or how to implement an algorithm or data structure.

R5. To learn unfamiliar concepts.

R6. To fix a bug.

R7. To get ideas to implement a new system.

Results from our literature review informed the options we included in our online

questionnaire for the question “What are you trying to accomplish by looking for

source code on the Web.” We came up with 7 types of motivations based on our

survey of the literature. Two of these types were very similar and we collapsed them

in one to be included in our online questionnaire. We collapsed R2 (To find examples

of usage for GUI widgets or API/libraries) and R4 (To find examples to clarify how

to implement functionality in a specific language or how to implement an algorithm

or data structure) in a category called “Find examples” because both motivations are

related to looking for source code examples. We also asked developers “What are you

looking for when you are searching for source code on the Web” to identify what are

the search targets they were trying to find. See Appendix B to see all the questions

and options included in the online questionnaire.

In our online questionnaire, we found that the most common motivation for de-

velopers to look for source code on the Web was to find examples (96%), followed

by searches to remember syntax for programming language details or frequently used

functionality (65%), as shown in Figure 4.5. We also found that developers commonly

expect to find just few lines of source code (92%), followed by libraries or APIs and

tutorials (69%) as a result of their searches, as shown in Figure 4.5.

Results from the online questionnaire showed that developers are mostly looking

for examples and they expect to find few lines of source code. However, we still
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Figure 4.5: Online Questionnaire: Motivations and Search Targets

did not know why developers were looking for examples. Similarly, we knew that

developers were looking for a few lines of source code or APIs but we did not know

what motivated developers to look for them. To find answers to these questions, we

conducted field studies of developers in the workplace.

From our observations in field studies, we learned that what motivates devel-

opers to look for source code on the Web are the software problems that they are

trying to solve. We found that developers were looking for examples or a few lines of

source code when they wanted to remember implementation details or find facts, or

when they wanted to clarify implementation details or fix errors. We also found that

developers looked for API documentation or tutorials when they wanted to clarify

implementation details.

When we compared our results from the online questionnaire and the field study,

there is no a perfect match between the motivations reported and the motivations ob-

served. This is mainly because in our online questionnaire, the options given were in

terms of both, software problems and search targets. However, in our field study the

motivations identified were software problems. Figure 4.4 shows this not so perfect

match. Notice that results from the online questionnaire do not sum 100% because

participants were allowed to select more than one option. Two categories match

exactly between the two studies: Remember syntax and learn unfamiliar concepts.

In both studies, remembering was the second most common motivation among de-
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velopers. Learn new concepts was the third most common motivation in the online

questionnaire, but in our observations it was the least common. In our field stud-

ies, we observed that developers do searches to clarify implementation details and fix

errors. This category matches with these categories in the online questionnaire: get

ideas to implement a new system and fix a bug. The categories find examples and

reuse source code in the online questionnaire do not match exactly to only one of the

categories in our field studies. By using an opportunistic problem solving perspec-

tive, we now know that developers look for examples when then want to remember,

clarify, and learn. Similarly, developers want to reuse source code in any of the four

categories identified in the field study.

Understanding software problems as the motivation behind Web searches provide

an appropriate context to identify the search targets developers are looking for.

4.3.2 Software Development Problems and Search Targets

Software problems that developers want to solve define the search targets. We found

that developers look for examples, code snippets, syntax, or API documentation when

they want to remember or find a fact. When developers want to clarify implemen-

tation details or find solution to a bug, they look for API documentation, examples,

code snippets, and error related information. If developers need to learn new con-

cepts, they usually look for tutorials or API documentation. When developers look for

open source projects, they try to find information related to the projects, specifically

with respect to the installation requirements, architecture, and reputation.

Table 4.2 uses circles to show how often developers look for each search target

when they are trying to solve each type of software problem. The bigger the circle, the

more frequent a search target is used to solve a development problem. For example,
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Remembering/
Fact Finding

Clarifying

Learning

Looking for Open 
Source Projects or 

Software Tools 

API Documentation/
Tutorial

Example/Code 
Snippet/Syntax

Open Source Project/
Software Tool

Error Related 
Information Others

7

18

8

11

10

3

16

1

7 2

3

1

Opportunistic
Searches

Non-Opportunistic
Searches

Search Target

Table 4.2: Search Targets by Type of Software Problems

we can see in this table that for 18 searches (out of 87) developers were looking for

API documentation or tutorials to clarify implementation details. We identified the

following search targets:

API Documentation/Tutorial Developers are looking for documentation of APIs

or tutorials, mainly when they want to clarify some implementation details.

Less frequently, developers look for these search targets when they want to

learn new concepts or remember syntax details.

Example/Code Snippet/Syntax We grouped examples (14), syntax (7), and code

snippets (3) together because when developers are looking for these search tar-

gets, most of the time they are trying to find few lines of code to be used as a

reference or to be reused. Developers look for this set of search targets when

they are trying to remember, find a fact, or clarify implementation details.

Open Source Project/Software Tool When developers are evaluating open source

project candidates or they are looking for a tool to help them with program-

ming, they look for information related to each candidate. This information

includes requirements to install the project, description of the architecture, and

what other people think about a project.
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Error Related Information When developers get exceptions after they compile,

run, or test their code, they look to the Web to find error related information

that could be helpful to understand the error and fix it. Developers are inter-

ested in finding the cause of the error, how to solve it, and experiences other

developers have with the same issue.

Others In this category we grouped search targets that did not fall in any of the

previous categories. We found that developers are also trying to find again a

Web page recently visited that was useful but they do not have a link to it (2),

and trying to find the meaning of a word (1). In one case, a developer did not

know exactly what he was looking for and in other two cases developers describe

their search targets in terms of the problems that they were trying to solve.

Search targets identified in our field studies are consistent with the search targets

that developers identified in our focus group. In our focus group, 12 pairs of software

developers were given 27 index cards with examples of search targets they can find

on the Web. Participants were asked to classify these examples into at least 2 and no

more than 8 categories based on similarities or differences.

We took the examples and the categories generated by every group and performed

a Formal Concept Analysis (FCA) on them. FCA is a data analysis technique that

takes a matrix of objects and properties of objects and derives an ontology, called a

concept lattice. This technique has been used in a number of areas, including artificial

intelligence, software clustering, and genetics.

The concept lattice in Figure 4.6 was created using the data from our study

with the Concept Explorer application. The white boxes are the search targets from

the study. The grey boxes are the categories created by the participants. When

targets or categories always appeared together, they were collapsed into a single box.
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The organization and layout of the lattice are generated automatically and it reflects

the relationships between the concepts. More specific concepts appear closer to the

bottom of the lattice, and more general ones appear to the top. Circles are placed

where different objects are joined to create more general concepts. Larger circles

indicate greater confidence in the concept. Some circles are barely visible and not

labeled, as these have been created by the analysis process and were not part of the

input data. Circles where the bottom half is colored black indicate an exact match

with categories created by the participants. Circles where the top half is colored blue

indicate an exact match with search targets in the study. Edges in the lattice depict

a relationship between concepts, with line thickness showing the strength.

In this concept lattice, examples and snippets are in the left half, tutorials, forums,

patches, and bugs are in the middle, Javadoc appear next, and system, product, and

frameworks were placed on the far right. There are 8 clear, consistent concepts:

example, snippet, tutorials, forums, patches, bugs, Javadocs, and systems. Open

source projects and snippets are distinct from each other, but the definitions are

fuzzy. There are five “snippet” concepts, and there are many close concepts, such as

“partial tool,” “tutorial,” “forum,” and even “example.” Open source projects have

a similar variety of categories, such as “system,” “product,” “project,” “framework,”

and “dependency.” These are not merely different labels, but also include different

search targets. One pair of participants considered a binary search implementation,

code to validate email addresses, and code to convert a Java Array to a Map as the

only snippets. Another pair had a broader definition of snippet, one that included all

the implementations, classes, and specific code. Interestingly, this same set of search

targets were labeled as partial tools by another group.

These eight categories of search targets found in the focus group fit almost ex-

actly with the five categories observed in our field studies. Tutorials and Javadocs
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Figure 4.6: Concept Lattice for Examples and Categories in Focus Group
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found in the focus group which are related in the concept lattice fit into the API

Documentation/Tutorial found in the field study. Similarly examples and snippets

from the focus group fit into the example/snippet/syntax found in the field studies.

Also, patches and bugs found in the focus group belong to the category of error re-

lated information identified in the observations of developers. The category systems

in the focus group is related to the open source projects identified in the field studies.

Finally, the category forum identified in the focus group was not identified as a search

target but instead as a relevance cue used to select search candidates.

4.3.3 Looking for Code Snippets and Looking for Open Source

Projects are Different Problems

Analyzing the motivation of Web searches from an opportunistic problem solving

perspective, makes evident the differences between searches for code snippets and

searches for open source projects.

When developers search for code snippets or explanations to remember syntax

details, clarify implementation concepts or fix bugs, and learn new concepts, they are

performing opportunistic searches. These searches do not follow a planned process,

instead, they are ad hoc. Developers perform opportunistic searches to find missing

information and incrementally gather information.

On the other hand, Web searches to look for open source projects are done fol-

lowing a methodical or planned process. Developers methodically evaluate each open

source candidate by looking into the Web for further information about a set of crite-

ria. These criteria includes cost, installation requirements, functionality, architecture,

and reputation.
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Finding these differences between searches for code snippets and searches for open

source projects makes it clear that developers need different tool support for these

two types of searches.

4.3.4 Classification of Tools for Opportunistic and

Non-Opportunistic Searches

We present the classification of tools on the support they provide to opportunistic

and non-opportunistic searches as shown in Table 4.3. In this subsection, we first

provide an overview of software engineering tools in the areas of code search, mining

software repositories, software reuse, and program comprehension by classifying them

according to their main goal. Then, we present the classification of these tools on

their support to opportunistic and non-opportunistic searches.

Overview of Source Code Search Tools

We classified source code search tools in nine categories based on their main goal.

The tools included for each category are shown in Table 4.3. Categories with more

members are shown first. The nine categories that we identified are:

API and Example Code Search In this category, we included the tools that help

developers to identify an appropriate API and/or to find examples that show

how to use APIs, frameworks, or libraries. More precisely, these tools help

1http://demo.spars.info/j/
2http://www.koders.com
3http://www.google.com/codesearch/
4http://www.krugle.com/
5http://snipplr.com/
6http://www.smipple.net/
7http://sourceforge.net/
8https://github.com/
9http://www.google.com/
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Opportunistic
Searches

Non-
Opportunistic
Searches

Both

API and Ex-
ample Code
Search

Prospector [36]
Strathcona [22]
MAPO [67]
Mica [59]
XSnippet [50]
PARSEWeb [63]
STeP IN Java [69]
SNIFF [7]
Blueprint [4]
SAS [3]

JSearch [56]
XFinder [12]

Assieme [20]

Web-based
Code Search
Engine

Agora [52]
SPARS-J1[25]
JBender [19]

Koders2

Google Code
Search3

Krugle4

Merobase [24]
Sourcerer [31]
S6 [48]
Exemplar [18]

Test-driven
Code Search

Code Conjurer [24]
CodeGenie [30]

Extreme Harvest-
ing [23]

Code Snippet
Web Search
Engine

Sniplr5

Smipple6

Project host-
ing Site

SourceForge7 Github8

Reuse Oppor-
tunity Recom-
mender

CodeBroker [68]
Rascal [38]

Source Code
Integration

Jigsaw [10] Gilligan [21]

General Pur-
pose Web
Search Engine

Google9

Others Codetrail [17] JIRISS [47]

Table 4.3: Tool Classification by Type of Searches
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developers identify an appropriate API to use (Mica, Assieme, STeP IN Java,

SNIFF), look for more information about an API (Mica, Assieme), look for

examples of how to use an API (Strathcona, JSearch, MAPO, Mica, Assieme,

STeP IN Java, XFinder, SNIFF, SAS), look for how to instantiate an object

of a class type derived from another class type (Prospector, PARSEWeb),

look for how to instantiate an object (XSnippet), look for experts on an API

(STeP IN Java) or look for code examples in general, not necessarily related

with APIs (Blueprint). Some of these tools are web-based (Mica, Assieme,

STeP IN Java, SAS) and others are integrated in an IDE (Strathcona, Prospec-

tor, JSearch, MAPO, XSnippet, PARSEWeb, XFinder, SNIFF, Blueprint) as

an Eclipse plug-in.

Web-based Code Search Engine In this category we have Web applications that

help developers look for source code on open source projects. All of these tools

provide a Web interface that allows developers to enter a keyword query to

describe the source code need. The tools match the query with the source code

they have in their repositories, which has been crawled from the Web. Finally,

these tools show the results in a Web page to be evaluated by developers. Some

of these are commercial tools (Koders, Google Code Search, Krugle), and others

are research prototypes (Agora, SPARS-J, Merobase, Sourcerer, S6, Exemplar,

JBender).

Test-driven Code Search These tools receive a test case as an input and look for

source code that matches the test case structure and passes successfully the

execution of the test case. Tools in this category include Extreme Harvesting,

Code Conjurer, and CodeGenie. S6 was placed in the Web-based Code Search

Engine category and not in this category because including a test case as input is

optional for this tool. S6 also allows users to specify their needs using keywords,
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contracts with pre and post conditions, and security constraints.

Code Snippet Web Search Engine Tools in this category help developers to find

code snippets on the Web. Generally, these tools provide an online repository

where users can submit code snippets and also look for them. These tools do

not look for source code in open source projects. Instead, they look for source

code in their own repositories of code snippets. There are many Code Snippet

Web Search Engines available on the Web. In this review of the tools, we will

include two of them: Sniplr and Smipple.

Project Hosting Site A project hosting site provides a source code repository for

open source projects and also other features that help maintenance of projects

and collaboration among open source developers using the Web. SourceForge

provides support for several revision control systems such as Subversion and

CVS, while Github supports only the Git revision control system.

Reuse Opportunity Recommender Tools in this category help developers iden-

tify source code reuse opportunities. The user does not invoke these tools di-

rectly. Instead, the tools proactively suggest source code to be reused. These

tools automatically form a query to a repository and recommend source code

that can be potentially useful based on the current context and task of develop-

ers. These tools are usually integrated into IDEs as in the case of CodeBroker

and Rascal.

Source Code Integration In this group, we included tools which main goal is to

help developers integrate source code that they want to reuse into an existing

software project. These tools do not offer help to search source code. Instead,

they assume that developers already have both source code to reuse and a

software project where they want to reuse source code. These tools support in-

tegration at different levels of granularity, ranging from integration of a method
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into another method or class (Jigsaw) to integration of a software project into

another project (Gilligan).

General Purpose Web Search Engine These tools search for information on the

Web. The search results that they present consist of Web pages, images, and

other types of files. They are used for general purposes including source code

search. However, they are not specially designed for that kind of search, as is

the case of Web-based Code Search Engines. In this survey, we include one tool

of this category, namely Google, which has been reported to be commonly used

for code search [65]. There are other tools available on the Web that belong to

this category such as Yahoo! and Bing.

Others In the last category we included tools that do not belong to any of the

previous categories. Here we include JIRISS that performs code search inside an

IDE with a repository consisting of only the code in the IDE. In this category,

we also included Codetrail which goal is to improve developer’s use of Web

resources by connecting Eclipse IDE and the Firefox Web browser. Codetrail

helps users to automatically identify JavaDoc browsed in Firefox and to create

bookmarks to Web pages that have source code pasted in the IDE.

Classification of Tools by Type of Search Supported

We analyzed the tools previously presented to identify which tools support op-

portunistic searches, non-opportunistic searches, or both. Table 4.3 shows the classi-

fication of these tools.

Developers perform opportunistic searches to clarify implementation details, learn

how to use an API, to acquire a new concept, or to remind them of syntax. Developers

expect to find some lines of code that they could reuse with or without the need to

adapt the code to integrate it to their current development task. The types of tools
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that mainly support developers perform opportunistic searches are API and example

code search tools [36, 22, 67, 59, 50, 63, 69, 7, 4, 3, 20], code snippet Web search

engines, reuse opportunity recommenders [68, 38], and source code integration tools

[10]. Many of these tools, especially the ones in the first and third group in the

list, make use of the current context of the user to suggest potentially related code

snippets. Few tools in the project-hosting sites, test-driven code search, and general-

purpose search engine groups also help developers look for code snippets. Many tools

in the listed groups support both opportunistic and non-opportunistic searches, but

only the reuse opportunity recommender group and code snippet Web search engines

support exclusively opportunistic searches. When developers evaluate the result set

given by the tools, they mainly pay attention to the functionality of the code snippet.

In this case, developers do not need to worry much about licenses, support, reputation,

and other criteria. Not many tools offer support for integrating code snippets, mainly,

because they assume developers will copy and paste them.

Developers perform non-opportunistic searches when they want to reuse complete

frameworks or systems. Developers expect to find complete components or systems

that they could reuse, but the expectation changes according to what they find avail-

able on the Web. The types of tools that mainly support developers seeking open

source projects are web-based code search engines [52, 25, 19, 24, 31, 48, 18], source

code integration tools [21], test-driven code search [24, 30, 23], and project-hosting

sites. Only few of these tools take into consideration the current development context

of the developer to suggest components or to help in the evaluation of results. Many

tools in the listed groups support both opportunistic and non-opportunistic searches,

but there is no a group that supports exclusively non-opportunistic searches. When

developers evaluate open source components and projects, they look not only at the

functionality, but also at other aspects such as compatibility of the license, the support

and level of activity of the open source community in case of problems and questions,
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the quality of the software, and the reputation of the developers. After selecting a

suitable component or project, developers will adapt their current code, and possibly

the found code, to integrate them. There are few tools that help developers with this

integration.

4.4 Summary

In summary, we analyzed Web searches using an opportunistic problem solving ap-

proach to find out what motivates developers to look for information on the Web.

We found that developers mainly perform searches to opportunistically solve soft-

ware development problems (82% of Web searches). Opportunistic searches are ad

hoc and are done to remember syntax details, clarify implementation details or fix

bugs, and learn new concepts. On the other hand, non-opportunistic searches (only

18% of Web searches) are done following a systematic process and are performed to

find open source projects. Using opportunistic problem solving lenses we changed the

level of granularity to understand the motivation behind Web searches from search

targets to software development problems. This change on focus allow us to clearly

understand that what motivates Web searches are software development problems and

they define the search targets developers are looking for. Using the opportunistic ap-

proach also help us understand that searches for code snippets and searches for open

source projects are two different problems that should be investigated separately.
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Chapter 5

Judgments in Evaluation of Results

In this chapter, we present the judgments that developers make when evaluating

the results of source code search on the Web. We identified that developers use

different evaluation processes and relevance cues when they perform opportunistic

searches versus when they perform non-opportunistic searches. We first present the

differences between judgments in these two types of searches. Then, we present the

evaluation cues used for each type of search as well as the evaluation processes we

identified using a naturalistic decision making approach. Finally, we discuss how our

results differ from what is currently reported in the literature and present a summary

of our results.

5.1 Types of Judgments in Source Code Search on

the Web

We reviewed the literature on the judgments that developers make when they evalu-

ate candidates while looking for source code on the Web. We found that the literature
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reports two types of judgments: relevance judgments and suitability judgments [13].

Relevance judgments are made when developers identify promising candidates. Rele-

vance decisions are quick, lasting on the order of seconds, and use little information.

A lab experiment [55] reported that developers spent 32 seconds on average to make

relevance judgments. Suitability judgments are made when developers decide whether

a promising candidate is appropriate for the development problem at hand. Suitabil-

ity decisions take more time and involve a cost-benefit analysis. A lab experiment

[55] reported that developers spent days or weeks to make suitability judgments.

We started with this classification of judgments: relevance and suitability. After

performing our empirical studies, we have found that these two judgments happen

in all types of searches to different extents depending on the type of problem that is

being solved. We observed that there is a correlation between the type of judgments

developers made and the certainty level of expected results as shown in Figure 5.1.

When the expected results are close to certainty, developers mainly make rele-

vance judgments. When the expected results are highly uncertain, developers mainly

make suitability judgments, and when the expected results are somewhere in-between

certain, developers make both relevance and suitability judgments. Thus, when de-

velopers look for source code to remember or find facts, they usually find what they

are looking for in an average of 3 minutes and make mainly relevance judgments of-

ten using only one result or just looking at the search results page. Developers use

a combination of relevance and suitability judgments when they look for source code

to clarify implementation details and to learn. For example, in the case of developers

trying to clarify implementation details, they make relevance judgments based on the

match of a result with the API they want to use and make suitability judgments

based on how close the found source code fits with the specific problem they want to

solve and with the source code developers already have. The time spent for doing the
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combination of relevance and suitability judgments is on the order of 5–6 minutes.

When developers look for open source projects or tools they have a high uncertainty

regarding the expected results and developers will mostly make suitability judgments

including: matching of functionality, type of software license, social characteristics of

the project, and availability of a community of practice, among others.

Low 
Uncertainty

High 
Uncertainty

Uncertainty Level of Expected 
Results

Suitability 
Judgments

Relevance 
Judgments

Clarification
(~5.5 min)

Remember/
Fact Finding

(~3 min)

Learn
(~6 min)

Look for Open 
Source 
Projects }

}

Non-Opportunistic 
Searches

Opportunistic 
Searches

Figure 5.1: Correlation between Emphasis of Judgments and Certainty Level of Ex-
pected Results by Type of Software Problems

The fact that these two types of judgments happen in all types of searches makes

it difficult to study them separately. On the other hand, we have observed a clear

distinction between the types of judgments, cues, and candidate selection processes

used when developers are doing opportunistic versus non-opportunistic searches. For

that reason, we have restructured our classification of judgments. We find it clearer to

talk about judgments made in opportunistic versus non-opportunistic searches than

relevance versus suitability. Figure 5.1 also presents the relationship between these

two classifications of judgments.

In the previous chapter, we discussed our identification of two types of searches:

opportunistic searches and non-opportunistic searches. Opportunistic searches hap-

pen when developers want to remember syntax details or find facts, when they want

to clarify implementation details or find fix for bugs, and also when they want to
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learn new concepts. On the other hand, non-opportunistic searches are common

when developers are looking for open source projects and tools.

We observed that developers use different evaluation processes and relevance cues

for these two types of searches. For that reason, we discuss these two types of evalu-

ations separately in this chapter.

5.1.1 Overview of Results

Here we present an overview of our results for judgments in opportunistic and non-

opportunistic searches. Table 5.1 shows a summary of our results.

Remembering/
Fact Finding

Clarifying

Learning

Looking for Open 
Source Projects or 

Software Tools 

Actions Evaluation 
Strategy

Relevant 
Cues

# Cues 
Used Simulation

1 Query
1 Result

Only One 
Result

Serial

Serial

Comparison 
Between

1-8 Queries
2-13 Results

2-8 Queries
2-13 Results

1 Query
1 Result

- Result Order
- Example/Code Snippet
- Web Host Domain
- Social Cues
- Result Order
- Example/Code Snippet
- Page Type
- Web Host Domain
- Result Order
- Web Host Domain
- Page Type
- Title
Within Search Sessions:
- Result Order
- Web Host Domain
- Page Type
- Title
Between Search Sessions:
- System Architecture
- Installation Requirements
- Cost
- What other people think

2

3

2 or 3

2

Coding/
Testing

Coding/
Testing

Mental

Mental

Opportunistic
Searches

Non-Opportunistic
Searches

Table 5.1: Summary of Evaluation of Results by Type of Software Problems

When developers perform opportunistic searches, they often enter only one query

and evaluate one result to remember syntax details, but they enter multiple queries

and evaluate multiple results one after the other to clarify implementation details or
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learn new concepts. When evaluating results, developers use two or three relevance

cues including the result order, the presence of examples or code snippets, and the

Web host domain. During the evaluation of results, developers test results by actually

coding or testing the source code in an IDE when they want to remember or clarify

syntax details. When developers find information to learn new concepts, they often

read the information and understand it. They do not usually test it in an IDE.

On the other hand, when developers perform non-opportunistic searches to look

for open source projects, they often perform only one query and evaluate one result

to find information about a candidate system. After they collect information for sev-

eral candidate systems, they compare the systems based on the system architecture,

installation requirements, cost, and the opinions other people have about the system.

Developers often mentally process the information they find for each candidate and

select one.

5.2 Relevance Cues Used to Evaluate Search Re-

sults

In this section, we discuss results from our field studies, laboratory experiment, and

focus group regarding the criteria developers use to evaluate results for opportunistic

and non-opportunistic searches.

In our field studies, we observed the cues that developers use to evaluate results

returned by a Web search engine such as Google. Figure 5.2 shows an example of

search results returned by Google. We took notes about the cues we observed. Also,

after each Web search we observed, we asked our participants: “What criteria did

you use to select a candidate from the result list?” Based on our field notes and
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the answers that developers gave us, we identified the cues that developers use to

solve different types of problems. Table 5.2 shows the number of searches in which

developers used the cues organized by the type of searches. For example, this table

shows that developers used the result order as a cue to visit promising candidates for

18 Web searches performed to remember syntax details.

Title

Description

URL

Figure 5.2: Sections in Search Results Presented by Google

Title

Description

Links to Source Code

Technical Cues Social Cues

Figure 5.3: Sections in Search Results Presented in our Laboratory Experiment

For our laboratory experiment, we analyzed the cues that developers used to

complete the tasks assigned using the treatment interface. Each of our 16 participants

completed 2 tasks using the treatment interface. One task was to find a snippet of

source code, which falls in the category of opportunistic searches. The other task

was to find an open source project, which falls in the category of non-opportunistic

searches. Developers were given a list of 10 search results randomly ordered and they
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were asked to evaluate them and choose one result to complete the task. We decided

not to include the tasks where participants used the baseline interface because this

interface only shows a subset of cues that the treatment interface shows. The search

results in the treatment interface include for each match: title, description, links to

source code, technical cues (number of lines of code, number of classes, and number

of methods) and social cues (number of favorites, number of copies, and percentage

of positive reviews) as shown in Figure 5.3. We considered that a participant used a

piece of information, if the participant talked positively about that during the think

aloud process or during the debriefing, and also if the participant highlighted or pass

the mouse over that piece of information while working on a task. Table 5.3 shows

how often participants used the identified cues organized by opportunistic and non-

opportunistic searches.

Remembering/
Fact Finding

Clarifying

Learning

Looking for Open 
Source Projects or 

Software Tools 

Title Description Result 
Order

Page 
Type

Web Host 
Domain

Example/
Code Snippet

Cosmetic 
Appearance

2 3

7 6

2 1

1 1

18

24

9

12

TOTAL 12 (14%) 11 (13%) 63 (72%)

2 8

12 11

4 5

2 15

11

15

1

2

20 (23%) 39 (45%) 29 (33%)

Cue Social 
Cues Others No Cue 

Observed

1

0

1

0

2 (2%)

4

6

0

1

11 (13%)

0

1

0

0

1 (1%)

2

7

1

0

10 (11%)

Opportunistic
Searches

Non-Opportunistic
Searches

SUBTOTAL 11 (15%) 10 (14%) 51 (72%) 18 (25%) 24 (34%) 27 (38%) 2 (3%) 10 (14%) 1 (1%) 10 (14%)

SUBTOTAL 1 (6%) 1 (6%) 12 (75%) 2 (13%) 15 (94%) 2 (13%) 0 (0%) 1 (6%) 0 (0%) 0 (0%)

Table 5.2: Relevance Cues by Type of Software Problems from Field Studies

We also report on the answers that developers gave during our focus groups when

we asked them: “What do you consider to be a good candidate for each group? and

what characteristics do you use to assess if a candidate is good?”

We will now discuss the cues we observed in our empirical studies organized by

opportunistic and non-opportunistic searches.
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Title Description Links to 
Code

Lines of 
Code

Number of 
Classes

Number of 
Methods

Number of 
Users

16 (100%) 15 (94%)

16 (100%) 16 (100%)

16 (100%)

16 (100%)

5 (31%) 2 (13%)

4 (25%) 2 (13%)

2 (13%)

2 (13%)

Cue Number of 
Downloads Reviews Example/

Code Snippet

5 (31%)

2 (13%)

4 (25%)

2 (13%)

10 (63%)

6 (38%)

0 (0%)

6 (38%)

Opportunistic
Searches

Non-Opportunistic
Searches

TOTAL 32 (100%) 31 (97%) 32 (100%) 9 (28%) 4 (13%) 4 (13%) 7 (22%) 6 (19%) 16 (50%) 6 (19%)

Page Type

0 (0%)

6 (38%)

6 (19%)

Others

2 (13%)

1 (6%)

3 (9%)

Table 5.3: Relevance Cues by Type of Software Problems from Laboratory Study

5.2.1 Relevance Cues Used for Opportunistic Searches

Based on our empirical studies, we identified 10 cues that developers use when they

evaluate search results to find solutions to their software development problems. De-

velopers commonly use multiple cues at the same time. We found that the number

of cues they use varies by the type of problem they want to solve.

The cues that we identified and we explain below are: title, description, result

order, page type, Web host domain, example/code snippet, cosmetic appearance,

technical cues, social cues, and other.

Title This refers to the first sentence that identifies a search result. This sentence

is shown as a link to the Web resource as seen in Figure 5.2 and Figure 5.3.

We identified developers as using the title when they explicitly mentioned they

were using it during the observation, when they highlighted the title with the

mouse, or when they indicated they used it when answering to our question

about the evaluation criteria used. When developers were skimming results it

was hard to tell if they were using the title or the description. In those cases,

we did not count Title or Description as a cue.

We had mixed results about the use of the Title in our field studies, laboratory

experiment, and focus groups. In our field studies, we found that developers
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did not explicitly mention or show that they used the title to evaluate results.

According to our observations and notes from field sites, developers only used

the title as a cue for 15% of opportunistic Web searches. Similarly, in the focus

group, few groups explicitly mentioned they used the title. Only a participant

in focus group 7 indicated that “In general, I read the title to verify if it is

related to the search or not. There should be a similarity between the title and

the task I have to do.” However, results from our laboratory study showed

that developers used the Title to evaluate search results to complete all the

treatment tasks.

It seems that developers indeed use the title for evaluation quite often, but they

just do not articulate this in their answers or do not make an evident use of

it. In the case of the laboratory experiment, we explicitly asked if participants

used the title in a paper questionnaire.

Description This refers to the couple of sentences that are shown after the title and

URL of a search result as illustrated in Figure 5.2 and Figure 5.3. Similarly to

the analysis of use of the Title, we identified developers as using the description

when they explicitly mentioned they were using it during the observation, when

they highlighted the description with the mouse, or when they indicated they

used it when answering to our question about the evaluation criteria used.

Similar to the Title, we also had mixed results from our field studies and lab-

oratory experiments. In our field sites, we observed that the description was

used only in 14% of opportunistic Web searches. However, it was used for 94%

of opportunistic Web searches in our laboratory experiment.

In the case of the Description, it also seems that it is commonly used in eval-

uation, but developers do not articulate it in their answers when they were

observed or interviewed. Only one group in the focus group mentioned that
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they use the “summary that Google provides” to evaluate candidates for all the

types of source code searches they perform.

Result Order This refers to the order in which the results are presented in the

search result list. In our field site observations, we identified developers as

using the order of results if they examined the results in the order given and

they clicked on one of the first three top results, or if they explicitly mentioned

in the interview that they used the order of results.

In our field study, we found that result order was the most used cue. Developers

used the result order for 72% of their opportunistic Web searches. It was com-

mon for developers to see the search results and click the first or second result

without even considering the other results below. Developers pay attention to

the order given by the search engine, as indicated by a participant in our focus

group. He indicated: “I always use the relevance given by the search engine to

decide which results to evaluate.” In our laboratory experiment, even though

we provided the search results in random order and we informed of that fact to

our participants, almost all of them read the results in the order given.

Page Type Developers chose to visit some search results because they recognized the

type of page where they could find an answer to their problems. By type of page,

we mean the format in which Web pages show information. The type of pages

that developers visited include: forums, mailing lists, documentation, tutorials,

and JavaDocs. Developers inferred the type of page from the information given

by the search result page that shows the URL, title, and description for each

result. Different types of pages where helpful for different problems developers

wanted to solve. For instance, forums and mailing lists were useful to find bug

fixes while tutorials and documentation where helpful to learn new concepts or

clarify implementation details.
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In our field studies, we found that developers used Page Type as a cue for

25% of opportunistic Web searches. However, in our laboratory experiment the

Page Type was not used as a cue. That is mainly because the interface used

in our laboratory experiment provided the same type of page for all the 10

results given. In our focus group, developers mentioned same characteristics of

tutorials and forums that they are looking for. A participant in focus group 2

mentioned that: “Tutorials with examples are the best. If I have many tutorials,

I will go to the one that has examples. If I have many with examples I will, in

many cases, mix the examples.” The same participant also mentioned that “In

the case of forums, you judge on the quality based on who is posting or on the

quality of the comments. You start reading and you can see if they are joking

or if they know what they are talking about. You have to check who post it.”

Web Host Domain The domain or URL of a page was also used as a cue to visit

search results. This was the third cue most used by developers solving op-

portunistic problems. Developers used this cue in 34% of opportunistic Web

searches observed in our field sites. Developers trust certain pages because they

are “official” or because these pages were helpful in the past to find answers.

The sources of pages that developers preferred in our field studies are: Stack

Overflow, IBM, Microsoft, Wikipedia, and official API Web pages. For instance,

when we asked Scott why he chose a search result, he mentioned: “I went there

probably because it is Stack Overflow. It often solves my problems.” Similarly

in our focus group, developers also indicated they prefer official pages. For ex-

ample a participant in focus group 1 indicated that he prefers official sites when

he is looking for information about bugs: “Definitely it has to look official. It

has to be a real bug tracking tool or something where you can say here is the

bug, this is the problem, here is the status, whether it is solved or not. Ideally

it would have an estimation of when it is going to be solved. Or ideally, it will
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have the patch for the release.” We did not include results from our laboratory

experiment because all the search results showed in the experiment belong to

the same Web host domain.

Example/Code Snippet Developers also used the presence of source code or ex-

amples in a Web page as a cue to evaluate search results. This was the second

most common cue used to evaluate results to solve opportunistic problems. De-

velopers used this cue for 38% of opportunistic Web searches observed. They

wanted to find: syntax details, source code in specific programming languages,

examples, and links to download examples. It was not straightforward for de-

velopers to know just by looking at the text of search results if the Web page

includes examples or source code. Sometimes the description of a search result

will show source code. However, developers inferred that a result contains ex-

amples based on the type of Web page or the URL. For example, developers

knew that they have a high probability of finding examples or source code in

Stack Overflow, tutorials, or pages that include the word examples in the title.

In some cases, developers included the word “example” in their queries to make

sure they will have search results that contain examples.

The characteristics that developers look for while evaluating snippets of source

code include simplicity, readability, and running examples. Participants in focus

groups 1 and 4 agreed in that they will be more willing to use a snippet of source

code if the source code looks simple. A participant in focus group 1 mentioned:

“I should be able to copy and paste samples and they should work, ideally. For

the best ones you should not need to change much. That also means that it is

easy to understand. If I do not know what the code is doing, I will not use it.

Yeah, I will be confused and I will look for another example because it could

have behaviour that I do not know where it comes from or that you do not want.

The simpler, the better for me.” A participant in focus group 4 also indicated
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that he looks for simplicity when evaluating snippets: “Simplicity. The simpler

it looks the more willing I would be to copy and use it.” The other participant

in focus group 4 emphasized the importance of finding source code that is easy

to read. He indicated: “For me it is readability, if it is easy to read and it is

understandable.” Finally, developers also wanted snippets that run and work.

A developer in focus group 4 also indicated that: “When looking for a set of

functionality, I just try to run them. If they run without any modification, then

I might use them to modify them. If they look like they are not going to function

by themselves or if they do not look like they are being maintained or they will

not work, I would just drop them.”

Cosmetic Appearance Developers visited Web pages that did not have adds and

looked clear and serious. This cue was only used in 3% of the opportunistic

searches we observed. When we asked Bob why he chose one page over the

other. He said: “The first one was shady, ugly, it gave the same information

and it had adds. Maybe the information is the same but this is more serious.

This is the official one. Avoid the ones that have adds.” Developers in our

focus group also mentioned that they prefer websites with few pop-ups, as in

the case of a participant in focus group 8 who indicated: “When looking for

snippets, I look for a Web site with less pop-ups.” Developers also emphasized

the importance of how results are presented so that source code can be easy to

read. For instance, a participant in focus group 12 mentioned: “You really want

code, so you do not want a very descriptive text, you want the actual code, you

want to see what is less wordy. It is also about the presentation of the results.

If it is text only, text in the same layout, it is difficult to distinguish, some

pages have the code different how you would see it in an IDE. The presentation

matters.”
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Technical Cues Developers also use technical cues to evaluate potential candidates

that could help solve software development problems. We define technical cues

as software metrics, such as number of lines of source code or number of classes,

that could be useful in comparing several pieces of source code. Although

general-purpose search engines do not show technical cues in the search results,

we observed that developers in our field sites look for these cues, in particular

for lines of source code. We observed that developers preferred pieces of source

code with fewer lines of code when they were looking for source code snippets.

In our laboratory experiment, we included three technical cues in our search

results: number of lines of source code, number of classes, and number of meth-

ods. Among these cues, the number of lines was the most used. Developers

used the lines of code for 31% of opportunistic Web searches as seen in Table

5.3. Participants in our focus group also mentioned that they pay attention to

the number of lines of source code while evaluating source code. For instance,

a participant in focus group 5 indicated: “If I am looking for how to code an

array in Java, if I find a 21 line solution, I am not going to like it, I would

rather find one line solution. It should not take many lines of code to do that. I

am looking for simplicity but not over simplicity. My decision will be based on

my intuitive sense of how complex a solution should be.”

Social Cues It is also important for developers to know what are the experiences

of other developers with a piece of source code. Developers used social cues

to determine which results to evaluate for 14% of opportunistic Web searches

observed. Developers were looking for what other people think about a piece

of source code (Web users as well as co-workers), what are the comments that

people left in Web pages related to the effectiveness of a solution or source code,

and how other people solve a bug.
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In our laboratory experiment, we included three social cues in the search re-

sults: number of copies, number of favorites, and percentage of positive reviews.

Among these three social cues, the most used was the percentage of positive re-

views, which was used in 63% of the tasks to find snippets of source code in the

laboratory experiment. Developers in the focus group use social cues to decide

which code snippets they can trust based on the reputation of the author of a

piece of source code, if available, as indicated by one participant in focus group

10: “Some forums have some kind of reputation. Some have a profile, then I

use that. I see if they [developers] work in a big application. If I did not find

anything, random example random person, I will just try it.” Developers can

also identify if they can trust a piece of source code based on how useful was

that piece for other developers, as mentioned by a participant in focus group

3: “For snippets, it is easier if you would find the solution for example in Stack

Overflow because someone else knows that the solution actually works and you

have a bunch of answers that say it worked for me in this or this situation. It

is easier to trust the solution.”

We found mixed results for the use of social cues in our field studies and labo-

ratory experiment. It was used for 14% of searches in our field studies but 63%

of searches in our laboratory experiment. One explanation for this mismatch is

how the cues were presented in these two studies. In the case of the laboratory

experiment, we showed the social cues in the result page as shown in Figure 5.3.

Developers used these cues to evaluate results by just looking at the search re-

sults and without visit them. On the other hand, in our field studies, developers

were using Google search results most of the time, which did not include social

cues in the results list. In this case, developers had to click a search result and

look for the social cues, such as number of download, reviews, and comments.

The presentation of social cues has an impact on the use of them.
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Others In our field studies, we observed that one developer used a cue that did not

fall in the categories described before. He used the date in which the content of a

Web page was published to determine if the search result was relevant or not. In

this case, the developer was trying to clarify what is the difference between the

event of clicking with the mouse or doing it programmatically. In our laboratory

experiment and focus group, the cues observed fall in the categories described

before.

No Cues Observed We did not have enough information to determine the cues

developers used for 14% of the opportunistic Web searches observed. In some

cases, the search was so quick that the researcher missed most of the search

while taking notes. In other cases, no clear cues were observed and developers

had a hard time articulating why they chose a search result.

In our field studies, we also found that the number of cues used to evaluate search

results has a relationship with the type of software problem developers want to solve.

We classified the searches in which developers used zero, one, two, three, or more

than three cues to evaluate results. This classification can be seen in Table 5.4.

Developers most often used two or three cues to evaluate results for opportunistic

searches. They used three cues for 34% of searches and two cues for 27% of oppor-

tunistic searches. They used more than three cues for only 11% of searches. When

developers wanted to remember syntax details or find facts, they often used two or

three cues (result order, example/code snippet, and Web host domain). When they

were trying to clarify implementation details they usually used three cues (result or-

der, example/code snippet, and page type). When developers wanted to learn new

concepts they used up most three cues (result order, Web host domain, and page

type). Developers sometimes used zero cues when they went directly to bookmarks.
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Remembering/
Fact Finding

Clarifying

Learning

Looking for Open 
Source Projects or 

Software Tools 

Zero One Two Three More than 
Three

2 3

7 4

1 3

0 3

8

7

4

9

SUBTOTAL 0 (0%) 3 (19%) 9 (56%)

6 3

14 5

4 0

3 1

3 (19%) 1 (6%)

Cues Used

SUBTOTAL 10 (14%) 10 (14%) 19 (27%) 24 (34%) 8 (11%)

TOTAL 10 (11%) 13 (15%) 28 (32%) 27 (31%) 9 (10%)

Opportunistic
Searches

Non-Opportunistic
Searches

Table 5.4: Number of Relevance Cues Used by Type of Software Problems

We also considered that developers used zero cues when we did not have enough

information about the evaluation.

5.2.2 Relevance Cues Used for Non-Opportunistic Searches

When developers look for source code on the Web to solve software development

problems, they perform two types of searches: opportunistic and non-opportunistic

searches. In the previous section, we discussed the relevance cues that developers use

to evaluate search results for opportunistic searches. In this section, we discuss the

relevance cues used by developers when they perform non-opportunistic searches to

find open source projects.

Based on our empirical studies, we observed that developers perform two kinds
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of evaluations when selecting an open source project. In the first kind, developers

evaluate search results in individual search sessions to look for information related to

a potential open source project. In the second kind of evaluation, developers already

have information on multiple open source projects and they evaluate the information

collected in different Web searches to select one open source project. We found that

developers used different relevance cues when they did the evaluation of candidates

within a search session from when they did the evaluation of candidates between

several search sessions.

Relevance Cues Used within a Search Session

Based on our observations from field studies, when developers evaluate search

results to find information about open source project candidates, there are two cues

that are used the most: Web Host Domain and Result Order as can be seen in Table

5.2. Developers are looking for the official Web page for each open source candidate

that they are evaluating, for that reason they prefer to use information from the Web

host domain that seems the official one. In most of the cases, developers enter the

name of an open source project candidate as the query. As a consequence, the top

results are usually the official pages of these systems. In only few cases, developers

also used the title, description, page type, example/code snippets, and social cues.

Similarly, in our focus group developers mentioned the importance of using an official

page and looking for documentation when they are trying to find an open source

project. One participant in focus group 1 indicated: “I will use a page that looks

official and allows me to download it. It also has to say that it does what I need to

do. It has to be well documented.”

Results from our laboratory study do not match with results from our field stud-

ies. In our laboratory experiment, developers were given a list of 10 open source

projects that they had to evaluate and then they had to choose one to complete an
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implementation. To evaluate these open source projects, developers used the title, de-

scription, and links to source code for all searches. Among the technical cues showed,

the most used one was the lines of code for 25% of non-opportunistic searches. The

most used social cue was the percentage of positive reviews, used for 38% of searches.

In addition, we observed that developers were also using other cues not included in

the result list such as examples and page type (documentation). Developers indicated

they were looking for documentation and examples that show how they should inte-

grate the open source project with their own code to complete the implementation

requested in the laboratory task.

We believe the difference in results between the field studies and the laboratory

experiments was due to the fact that search results are presented differently and also

the nature of the task they had to complete in 15 minutes. We will expand on these

differences in Section 5.4.4.

Relevance Cues Used between Search Sessions

In each search session, developers collected information about each open source

project candidate. This information was later used to compare and decide which

candidate to use. While observing developers doing this type of searches, it was

not very obvious what information they were collecting or paying attention for each

open source candidate. After the developer was done with some searches, we asked

him about the criteria he was using. He told us that the criteria he used to evaluate

different open source candidates included: architecture of the system, requirements to

install the system, cost, and what other people think about this project. Similarly, a

developer in focus group 10 mentioned the importance of knowing who else is using an

open source project, what is the environment needed, support available among others.

He indicated: “I would like to know who else is using this project or system. Complete

technical information, environment in which you can run it, support available, if it is
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open source, community of developers, do they create extentions, do they modify it?”

5.3 The Process to Evaluate Search Results

Our results indicate that the evaluation of source code search results is a rapid, almost

unconscious, and instinctive activity. Yet developers are able to successfully use Web

search to solve their software development problems. So the question arises: How are

developers able to make effective judgments so quickly?

Motivated by this question we looked into the decision-making literature and we

found that developers were making “Recognition-Primed Decisions.” Such decisions

are made by assessing the situation, rather than individual results in detail. A fa-

miliar situation is used to set expectations and to select cues. This assessment helps

developers to identify promising candidates and select a good-enough solution in a

serial evaluation of options.

Recognition-Primed Decisions can be seen in “naturalistic” environments in which

people need to make decisions under time pressure and stress to solve ill-defined

problems. These characteristics exactly match the environment in which developers

need to make decisions to find a solution to their problems.

In this section, we first present the characteristics of evaluation of search results

we observed. Next, we present Naturalistic Decision Making Theory and explain why

Source Code Search on the Web can be considered a Naturalistic environment. Then,

we discuss how Recognition-Primed Decisions happen in Source Code Search on the

Web for both opportunistic and non-opportunistic searches.
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5.3.1 Characteristics of Evaluation of Search Results in Source

Code Search on the Web

Judgments to Choose a Promising Candidate are Quick

Developers visit the first promising candidate in less than 10 seconds for 79% of

queries. During our observations, we were surprised by how quickly developers chose

the candidates they evaluated. Sometimes developers were already integrating a piece

of source code they found on the Web, while we were still taking notes about the

initial search. This observation motivated us to implement a Web browser extension

to record the time they entered a query in a search engine and the time they visited

promising candidates. Ten developers, all in the US, used the browser extension on

the day that they were observed. The browser extension collected 70 queries for 38

search sessions and developers visited at least one result for 56 queries. We calculated

the time it took for developers to click the first result after doing the search. To do

that, we calculated the time difference between the timestamp of the first click and the

timestamp of the query formulation. Figure 5.4 shows in the x-axis the time of first

visit to promising candidates grouped by 10 seconds. The y-axis shows the number

of queries. From this graph, we can see that developers visit the first promising

candidate in less than 10 seconds for 79% of queries.

It is Difficult for Developers to Explain or Remember their Judgments

and Searches

Developers have a hard time verbalizing why they chose promising candidates.

They make decisions so quickly that they do not even think about how they do it. We

asked our participants about how they select promising candidates, and sometimes

they were not able to articulate the criteria or metrics that they used. When pressed,

we received answers such as “I try always the first one and then the others. I am not
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Figure 5.4: Time of First Visit to Promising Candidate

consciously thinking.” This developer is evaluating the results almost instinctively.

Sometimes developers do not even remember performing a search. For instance,

after Brian completed 4 searches, we interrupted him to ask some questions. He was

surprised by our request and exclaimed: “Really? Four searches? I remember doing

maybe only one.”

5.3.2 Naturalistic Decision Making in Source Code Search

on the Web

The Naturalistic Decision Making (NDM) Theory [26] emerged in response to the lack

of theories that explained how people actually make decisions in real-world settings.

Previous theories mainly identified optimal ways of making decisions in settings that

were well-structured and could be controlled, such laboratory experiments. Instead of

creating a model of decision-making first and then evaluating it in a laboratory, NDM

researchers conducted field research to discover how people make decision under time

pressure with vague goals, uncertainty, and unstable conditions. The field settings

that were studied included Navy commanders, jurors, nuclear power plant operators,
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Army small unit leaders, anesthesiologists, airline pilots, and nurses.

A natural question to ask is: Why Naturalistic Decision Making? NDM seemed

suitable to help us achieve our goal of better understanding how developers made

judgments when they look for source code on the Web. This is mainly for two reasons.

First, software development organizations present all the eight characteristics of a

naturalistic environment [42, 51]. Second, judgments and decisions are a central

piece for this theory as it is for our research goal.

We also considered other theories, such as the Everyday Problem Solving theory

[58] and Opportunistic Problem Solving in Programming [49]. Although these two

theories match very well with the everyday problems developers face to complete their

software development activities, they both emphasize the problem solving activities

over the decisions taken to solve the problems. However, these two problem-solving

theories are applicable in naturalistic settings due to the fact that they both deal

with ill-structured problems.

NDM provided us with a good foundation to understand the settings in which

developers look for source code on the Web. There are eight factors that characterize

NDM [26]. We will explain each of the factors and how they apply to source code

search on the Web. A summary of how NDM’s characteristics apply to code search

on the Web is shown in Table 5.5.

Ill-structured Problems Ill-structured problems are found when both the goal and

how to solve the problem are initially unclear. This type of problem is very

common in everyday situations. When people face ill-structured problems, they

first need to discover and clarify the end goal, and then discover and test the

means for achieving the goal [58].

Seventy-five percent of the problems developers want to solve by looking for
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Ill-Structured 
Problems

Shifting, Ill-
defined, and 

Competing Goals

Action/feedback 
Loops

High Stakes

Source Code Search on the Web

Goal and means to solve problems are 
initially unclear.

Uncertain Dynamic 
Environments

Naturalistic Decision Making Environment

75% of problems developers want to solve 
are ill-structured.

Decision makers have incomplete 
information. Environment changes quickly 
during the time a decision is being made.

Uncertainty due to interaction between 
people working in parallel and obscure 

nature of software bugs.

Decision makers have to deal with 
multiple and often conflicting constraints.

Competing goals: find good enough 
solution in short time.

Decision makers follow actions to deal with 
problems or to find out more about them.

Developers learn the "right" vocabulary to 
use while reading search results which help 

them refine their queries.

Time Stress Decision are made under significant time 
pressure.

Developers have limited time to perform 
searches on the Web.

Stakes matter to the participant who will take 
an active role to arrive at a good outcome.

High cost in time and money in case a 
component is not the right one.

Multiple Players Common to have more than one decision 
maker in the process of solving a problem.

What developers find on the Web and decide 
to use in their projects can affect many 

people in the team and the organization.

Organizational 
Goals and 

Norms

Decisions are not only driven by personal 
preference but also by goals, values, rules, 

and guidelines from the organization.

Organizational culture affected Web 
searches: US participants engaged in 

collaborative searches more often.

Table 5.5: Summary of NDM’s Characteristics Applied to Source Code Search on the
Web

information on the Web are ill-structured. When developers deal with this type

of problems, they do not exactly know what they are looking for and it is hard

for them to formulate queries and recognize a good-enough solution. They tend

to have a better understanding of the problem by looking at intermediate results

and refining their queries.

Developers face ill-defined problems when they are trying to learn, clarify, and

look for tools or open source projects on the Web. Although, developers also

deal with well-defined problems when they look on the Web to remember or

find facts, these are only 25% of the problems they need to solve.

Uncertain Dynamic Environments Decision-makers often have incomplete and

imperfect information. Information may be ambiguous or of poor quality. In

addition, the decisions need to be taken in an environment that changes quickly
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during the time a decision is being made.

Source code search on the Web also occurs in an uncertain dynamic environ-

ment. The goal of a search might change while in progress and be affected by

some characteristics of this type of environment. Some sources of uncertainty

and dynamism include people working in parallel to develop software and the

obscure nature of software bugs.

The impact of uncertain and dynamic environments on source code search was

evident in our observation of Scott at AppFolio. We saw him change his query in

the middle of working on a problem, based on the actions of others on his team.

Based on bug reports and stack traces, Scott thought the problem was caused by

the “Solr core” component. About half an hour into the search session, Scott

discovered that the stack trace had changed due to a colleague making a fix

that caused some exceptions to go away. The new stack traces helped Scott to

realize that the problem lay in how the Solr core was initialized. Consequently,

he modified his query in response to the new information, more than one and a

half hours after the initial query.

In this scenario, the goal of the search was affected by the uncertainty on the

cause of the error. In addition, the dynamic environment generated by multiple

people working in parallel and creating new versions on the repository also

affected the search.

Shifting, Ill-defined, or Competing Goals It is unusual for a decision to be driven

by a single, well-understood goal, or priority. The decision-maker has to deal

with multiple, usually underspecified, and often conflicting constraints.

When developers perform Web searches, they want to find a good-enough solu-

tion in the shortest time possible. They also have competing goals when they

evaluate results. For example, Joseph was looking for a tool to add performance

93



metrics to his Java program. He indicated that he was “looking for a tool that

other people say is good but at the same time do not add too much overhead to

my program.” He found a popular tool, but this added too much performance

overhead, so he decided to go with “old school performance metric capture” and

coded the solution by hand.

Developers also shift goals while they are doing Web searches. When they

examine results, they sometimes are exposed to new information and they need

to learn about those new concepts to continue their evaluation. Oscar was

looking for an open source project to do data mining of logs. While doing the

evaluation, he found some terms that he was not familiar with like “real time

ETL,” so he performed some searches to learn about that.

Action/feedback Loops Decision-makers follow a chain of actions to deal with the

problem or to find out more about it, or both. Mistakes in earlier actions provide

helpful feedback for later corrective actions. These action/feedback loops can

also generate new problems to be solved.

Developers experience many action/feedback loops while doing searches on the

Web. These feedback loops are more common when they are trying to solve

ill-structured problems.

Developers sometimes have a hard time translating into a query what they want

to look for. They enter a query and then read the results. While reading the

results, they learn the “right” vocabulary to use and refine their queries. A

single query refinement is common, and usually consists of adding a new word

that will filter out some unrelated results. For example, Michael refined his

query from “openmq http” to “openmq http php” to find results only for php.

We observed few query refinements that included 2 refinements, and only one

that included 7 refinements, which occurred when a developer was learning a
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new concept.

Time Stress Developers have limited time to perform searches on the Web. The

time they are willing to spend searching can vary depending on the type of

search. On one side of the spectrum, developers spend only seconds doing

searches to remember syntax. On the other side of the spectrum, searches to

judge the suitability of open source components can take hours or days.

In our field studies, we observed this notion of limited time for searches mainly

when developers where having trouble finding what they were looking for. In

these cases, our participants verbalized at which point they decided to stop

searching and mentioned some reasons that motivated to give up the search.

Gregory: “If I do not find anything useful in Stack Overflow, I will give up.”

Manfred: “I would look more later. This is not stopping me more, so I will look

at this later, not now.”

Derek: “I will email the mailing list so they will work on that. They are experts,

I can work on other things while they do the research on that.”

These three examples show the fact that developers are aware of the limited time

they have to conduct searches on the Web to solve their software problems.

High Stakes Naturalistic Decision Making typically occurs in situations where the

stakes are high. A poorly executed search can lead to errors in the code or the

selection of the wrong open source project.

In an example already mentioned, one developer spent days looking for an open

source component. Oscar’s searches showed that he was doing a careful eval-

uation of the potential candidates and he was not giving up even though he

already spent one full day in this task. He knew the decision is an important

one for the project. We observed him performing 15 searches. Thirteen of them
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were to find information related to promising candidates. The queries for these

searches were the name of the systems he found in a MS power point presen-

tation he found in his first search. The shortest search took 2 minutes and the

longest took 44 minutes. He read information about 10 different components to

judge their suitability. At the end of the day, he had some potential component

candidates but he was planning on looking for more components the next day.

When performing these types of searches, developers spend a great deal of time

making suitability judgments to evaluate the requirements of each promising

component and to make sure that it will integrate well with the current compo-

nents. In case the chosen component is not the right one, there will be a high

cost in time and money depending on how late the error is discovered. This

cost might include: time and effort developing the integration layer with the

component, time and effort testing the integration layer with the component,

need to redo the selection of a new component, and delay in the delivery date.

Multiple Players It is common to have more than one decision-maker involved in

the process of solving a problem. What developers find on the Web and decide

to use in their projects can affect many people in the team and the organization.

Eduardo had to make a presentation to a Technical Committee about the ar-

chitecture of the system the team was implementing. The purpose of the pre-

sentation was for the Technical Committee to evaluate the design proposed by

the team, provide feedback, and suggest improvements. The Committee has at

least 5 members including the owner of the company, the Research and Devel-

opment manager, the Product Manager, the Support Manager, and the Project

Manager.

Eduardo needed to include in the presentation why the team chose to use Jahia

as the Content Management System for the project. Even though Eduardo was
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the only one presenting the design, 2 other team members helped him to find

information on the Web that would justify why they chose Jahia. They found

a Web page that included a comparison of some CMS including Jahia and they

used that information in the presentation. During the presentation, a member

of the committee mentioned that he have heard about Alfresco and he suggested

to also take a look at it. After the presentation, Eduardo went directly to do

a Web search. He entered the query “JAHIA VS ALFRESCO” in Google and

read about the differences between them.

This scenario shows that the decision of choosing one promising candidate over

others have an impact on the project in which many people is involved. Also

the decision is made by more than one person and affects not only the team

members but also the whole organization.

Organizational Goals and Norms Naturalistic Decision Making usually takes place

in organizational settings. Decisions are not only driven by personal preference

but also by goals, values, rules, and guidelines from the organization.

The organizational goals and norms affected how developers perform searches

on the Web. We carried out our study in two countries: Peru and the US.

We observed some similarities and differences in how the organizational culture

affected the searches.

Developers in both the US and Peru preferred to use free or open source software

for tools that support programming. The teams generally avoided software that

had monetary costs.

A major difference that we observed was that developers in the US engaged in

collaborative searches more often. Collaborative searches are those where more

than one person was involved. We observed 14 collaborative searches in the US

and 2 in Peru.
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At Health Connection, when a developer asked a question, other developers in

earshot often rushed to the keyboard to conduct a Google search for the best

answer. Although they were trying to help each other, there was also a com-

petitive edge, as if coming up with a better result also raised the status of the

developer. For example, upon hearing a co-worker call a method “depreciated,”

Brian corrected him saying, “it is not depreciated, it is deprecated” while si-

multaneously doing a Google search for evidence. At the same time a third

developer also performed a Google search and said “Yes, it is deprecated, not

depreciated!”

We also observed that having good Google search skills is important for devel-

opers. One of our participants was teased by co-workers because sometimes he

does “bad Google searches.” Curious, we asked the heckler for an explanation,

he said: “Uhm bad Google searches are those that are very specific and you do

not find any good results. You need to make it little bit general so you will find

something. For example, if you enter a query like ’I am having an error out

of memory when I run my Java program’ you might not find many relevant re-

sults, but if you enter ’out of memory error java’ you might have more relevant

results.”

In addition, we were surprised to find that developers in Peru mostly wrote

their queries in English even though their native language is Spanish. Ramiro,

said “I always write my queries in English even though I do not know much

English.” There were only four queries in Spanish. In two of these queries,

developers immediately switched to queries in English because good results

were not returned. Jose explained, “Sometimes there is more information in

English. For example, if you are looking for information in Wikipedia, you will

find more information in the pages written in English.”
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5.3.3 Developers Make Recognition-Primed Decisions for Op-

portunistic Searches

Having established that software developers engage in Naturalistic Decision Making

when they are searching for code on the Web, we turn to Recognition-Primed Decision

(RPD) Model of Rapid Decision Making, which explains how developers make deci-

sions so quickly. The RPD Model [26] helps explain how decisions are actually made

by experienced practitioners working under high stress and time pressure. In these

circumstances, people make an assessment of the situation to identify the actions that

could work. Actions are evaluated one after the other through mental simulation of

possible outcomes. A good-enough solution that solves the problem is chosen instead

of the best one.

We argue that developers make Recognition-Primed Decisions while evaluating

candidates when they perform opportunistic Web searches to solve development prob-

lems. They first assess the situation to set search targets, expectations, and relevance

cues. This situation assessment helps them to quickly identify potentially promis-

ing candidates, which are then evaluated, one after the other, until a good-enough

solution is found to solve opportunistic problems. Promising candidates are mainly

evaluated by software testing in an IDE and by mental simulation.

A reasonable question to ask is: Why Recognition-Primed Decision Model? RPD

was a suitable decision model to use in our research study for two main reasons. First,

RPD models rapid decisions that are made in situations of time pressure and high

levels of stress. In our field studies, we observed that judgments in evaluation of search

results took seconds. This model helps us understand how these rapid decisions can

be made. Second, RPD models how experts make decisions, which is very useful in

our study due to the fact that developers are experts in Web navigation.
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We also considered other theories to understand how developers make decisions

when they look for source code on the Web. We considered using the Information

Foraging Theory [45]. This theory has been used before in software development set-

tings to understand information-seeking behavior of programmers [41]; to determine

relevant information when developers seek, relate, and collect information in mainte-

nance tasks [27]; to explain and predict code navigation during debugging [29]; and

to predict code navigation [40].

We decided not to use the Information Foraging theory because it has been used

more to predict behavior [44, 46] than to explain it [28]. Also, this theory mainly

considers only text or word matching as “scents,” but we observed other “scents” like:

type of Web page, Web host domain, technical cues, and social cues that developers

use to evaluate results. In addition, the theory does not take into account time

constraints, which are very important in our study. However, we think that the

concept of Information Scent [45] proposed by this theory could complement the set

of naturalistic theories exposed here.

There are three phases in the RPD model: Situation Recognition, Option Evalu-

ation, and Simulation. We will explain each of these phases and how they apply to

opportunistic searches.

Situation Recognition in Source Code Search on the Web

The first step in situation recognition that decision-makers take is to make an

assessment of the situation they are facing. Situation assessment has four important

aspects: goals, expectations, actions, and relevance cues.

Goals Decision-makers determine the types of goals that can be reasonably accom-

plished in a situation.
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The goal of Web searches done by developers is to solve the software problems

they are facing. In our field studies, we asked developers “What was the goal

of your search?” after each Web search they performed. Developers’ answers

to this question were given in terms of the problems they wanted to solve. We

identified 3 types of opportunistic software problems developers want to solve:

• Remembering/Fact Finding

• Clarifying Implementation Details

• Learning New Concepts

We discussed each of these types of software problems that motivate oppor-

tunistic Web searches in Section 4.1.1.

Expectations Decision-makers form expectations, which can serve as a check on the

accuracy of the situation assessment.

Developers set expectations based on the problems they want to solve and pre-

vious experiences with similar searches. In our field studies, we asked developers

“What were the expectations of your search?” after each search they performed.

Based on developers’ answers, we found that most of the time developers had a

good understanding of what they expected to find and they verbalized it mainly

in terms of search targets. In a few cases, developers had a vague idea of what

they expected to find and in only one case a developer did not know what he

expected to find.

Developers assessed the situation to determine a reasonable search target. For

example, Joseph was trying to find out what is the typical functionality of a

check/uncheck all checkboxes. When we asked him what was the goal of his

search he said: “Ideally, I would like to find a user study that says what is the

functionality that works best. I do not think I would find that, but examples
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of what other people do.” The ideal search target for Joseph was to find a

user study. However, he thought that was not realistic based on his previous

experience and he set his search target to find examples of what other people

do.

We observed that developers set the following expectations, or search targets,

for opportunistic searches:

• API Documentation/Tutorial

• Example/Code Snippet/Syntax

• Error Related Information

• Other

We discussed each of these search targets and how frequently they are used for

each type of software development problem in Section 4.3.2.

Actions Decision-makers identify the typical actions to take when they are making

an assessment of the situation.

Developers commonly formulated queries in a Web search engine to find solu-

tions to their software problems. The number of queries and number of results

evaluated depended on the type of problem they wanted to solve. When devel-

opers wanted to remember syntax details or find facts, they usually formulated

only one query and evaluated only one result. When developers wanted to clar-

ify implementation details they evaluated more than two results from one or

multiple queries. In cases where developers wanted to learn new concepts, they

performed one query or multiple queries and they evaluated one or more results.

Based on the 87 Web searches we observed in our field studies, we found that

developers performed queries in a Web search engine, such as Google most

of the time (86%). For a few searches (10%), they went to bookmarks or
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URLs from sites they visited in the past. For almost half of the opportunistic

search sessions, developers formulated only one query. They formulated multiple

queries for 36% of opportunistic search sessions. We did not have information

related to the actions developers took for 7% of the searches. Table 5.6 shows

the actions taken by developers as well as the number of results visited for

searches done to solve the different types of software problems.

Remembering/
Fact Finding

Clarifying

Learning

Looking for Open 
Source Projects or 

Software Tools 

1 QueryBookmark

Zero

2-8 Queries

One 2-7 One 2-13

No info

4 1

3 1

0 0

0 0

10

2

3

12

TOTAL 7 (8%) 2 (2%) 27 (31%)

2 1

12 2

3 1

2 0

4

12

5

2

19 (22%) 4 (5%) 23 (26%)

0

5

0

0

5 (6%)

# Results Visited

Action

SUBTOTAL 7 (10%) 2 (3%) 15 (21%) 17 (24%) 4 (6%) 21 (30%) 5 (7%)

SUBTOTAL 0 (0%) 0 (0%) 12 (75%) 2 (13%) 0 (0%) 2 (13%) 0 (0%)

Opportunistic
Searches

Non-Opportunistic
Searches

Table 5.6: Actions and Number of Results Visited by Type of Software Problems

We found that developers take one of the following actions to find a solution to

their software development problems:

• Go to bookmark or URL. Developers sometimes do not perform Google

searches, but instead they go directly to Web sites for official documenta-

tion or Web sites that worked in the past. When Joseph had to find details

of a JQuery method, he went directly to the Web page for jQuery. He said

“I knew I will find the answer there.” He entered the word “Checked” in

the jQuery Web site and searched for the property “checked” and went to
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the first link and found the answer.

Developers decided to visit bookmarks or URLs when they needed to re-

member syntax details or when they wanted to clarify implementation

details.

• Query Formulation. The most common action developers took was to go

to a search engine such as Google and enter a query or multiple queries.

When developers did not find a solution to their problems after evaluating

the results from the first query, they tended to refine their queries.

– One query. For 48% of the opportunistic search sessions, developers

only entered one query. When developers wanted to remember syn-

tax details or they were looking for open source projects, they visited

only one search result after they performed a query. Developers vis-

ited between two to seven search results when they wanted to clarify

implementation details. In few cases, developers found an answer only

by looking at the search results and not visiting a single one. Most

of the results visited were in the first page of results which commonly

contains ten search results. Only in two searches did developers look

up to page 2 and 3 of results.

– Two to Eight Queries. For 36% of opportunistic searches, developers

decided to refine their queries. This mainly occurred when developers

wanted to clarify implementation details or find solutions to errors.

When developers refined their queries they visited at least one result

and a maximum of 13 search results. Only for 2 searches, developers

visited results that were in the result pages 2 and 4. In those cases,

developers were trying to find solutions to errors.

Relevance Cues Decision-makers increase the salience of some cues that they con-
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sider important for the situation they are assessing.

When developers make judgments to decide which search results they should

visit and which one they should choose to solve their problems, they use some

cues that align with the problem they want to solve, their expectations, and

their previous search experiences.

In our field studies, we explicitly asked developers which criteria they used to

choose search result candidates. They commonly had a hard time answering

the question and in some cases developers did not even remember the searches

they performed.

Based on our observations and answers from developers in our field studies, lab-

oratory experiment, and focus group, we identified 10 types of cues developers

use to evaluate search results. We describe these evaluation cues in section 5.2.

Option Evaluation

The decision-maker evaluates action alternatives one at a time until a satisfactory

one is found, in a serial manner. They do not usually do a comparison of alternatives.

Experienced decision-makers usually try to find a satisfactory course of action, not

the best one.

We analyzed the 87 search sessions we observed in our field sites and the 32 search

sessions from our laboratory experiment to determine the type of option evaluation

that developers used to find a good-enough solution that works to solve opportunistic

problems. From our field study, we found that developers mainly use serial evaluation

of candidates and comparison within a search session was rare. We found the opposite

from our laboratory experiments, developers often compared search results within

search sessions. We believe that the difference in our results has been impacted by

the way relevance cues are shown in the laboratory experiment which made it easier to
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do comparison of results just by looking at the result page. In many cases, developers

did not use any of the previously mentioned option evaluation strategies because they

only evaluated one result or went directly to bookmarks. In other cases, we did not

have enough information about the evaluation of results.

We identified four types of option evaluation: serial, comparison within a search

session, comparison between search sessions, and no serial or comparison. Table 5.7

shows the frequency of searches for each option evaluation type identified by type of

software development problems from our field studies and Table 5.8 shows the same

information for the laboratory experiment results. Here we explain, the three option

evaluation types we observed for opportunistic searches: serial, comparison within a

search session, and no serial or comparison.

Remembering/
Fact Finding

Clarifying

Learning

Looking for Open 
Source Projects or 

Software Tools 

Serial Comparison 
within

6 0

22 2

7 1

4 0

SUBTOTAL 4 (25%) 0 (0%)

0 16

0 13

0 4

11 1

11 (69%) 1 (6%)

Option 
Evaluation

Comparison 
between

No Serial or 
Comparison

SUBTOTAL 35 (49%) 3 (4%) 0 (0%) 33 (46%)

TOTAL 39 (45%) 3 (3%) 11 (13%) 34 (39%)

Opportunistic
Searches

Non-Opportunistic
Searches

Table 5.7: Option Evaluation by Type of Software Problems from Field Studies

Serial We considered the option evaluation “serial” if developers visited more than

one result and they chose to use a good-enough solution found without returning

to previously evaluated results or comparing the different results visited. We
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Serial Comparison 
within

2 (13%) 12 (75%)

8 (50%) 7 (44%)

0 (0%) 2 (13%)

0 (0%) 1 (6%)

Option 
Evaluation

Comparison 
between

No Serial or 
Comparison

TOTAL 10 (31%) 19 (59%) 0 (0%) 3 (9%)

Opportunistic
Searches

Non-Opportunistic
Searches

Table 5.8: Option Evaluation by Type of Software Problems from Laboratory Study

consider developers chose a good-enough solution when they stopped evaluating

candidates as soon as they found a candidate that helps solve the software

problem. Developers did not look exhaustively for the best candidate. When

developers did serial evaluation, they did it only for a single search session and

not among different search sessions.

Based on our field studies, in 49% of opportunistic search sessions observed, de-

velopers did a serial evaluation of candidates. In this group, we found searches

in which more than one search result candidate was evaluated but candidates

were not compared. Serial evaluation was common when developers were trying

to clarify implementation details or when they were trying to learn new con-

cepts. In these cases, developers stopped their searches as soon as they found

a good-enough solution that worked. Serial evaluation was less common in our

laboratory experiment; participants only used it for 13% of opportunistic Web

searches.

Comparison within a search session We considered that developers perfomed a

“comparison within a search session” when they evaluated more than one can-

didate and they returned to previously visited results or compared multiple
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results visited in the same search session.

Developers evaluated results by comparison within a search session for only

4% of opportunistic search sessions in our field study but it was used for 75%

searches in the laboratory experiment. In our field sites, we only found three

cases of this type of option evaluation done by three different participants. In

these cases, developers were trying to clarify implementation details or learn

new concepts. Developers evaluated more than one page to see which one was

more “serious.” After comparing alternatives, they went back to the one that

looked more serious or professional. In another case, a developer visited the

first result but he was curious about other results. He visited two more results,

but found some contradictions between them. So, he decided to use the first

result.

We believe that the high number of developers performing comparison within

searches in the laboratory experiments could be due to the fact that the search

results in this study included a summary of technical cues and social cues, which

made it possible for developers to compare different results by just looking at

the result page.

No Serial or Comparison In this group, we included the searches in which devel-

opers evaluated less than two results in a search session or they did not compare

the results between search sessions. We also included in this group the searches

for which we did not have enough information to determine the type of option

evaluation used.

In our field studies, we found that for 46% of opportunistic search sessions,

developers did not use serial or comparative evaluation. These searches include

26% of searches where only one result was evaluated and also 3% of searches

where developers found what they were looking for just by looking at the result
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page without visiting a single result. It also includes 10% of searches in which

developers went directly to bookmarks and no evaluation was involved. Finally,

it also includes the 7% of searches for which we did not have enough information

about how developers evaluated candidates. In our laboratory experiments, we

found that for 13% of opportunistic search sessions, developers evaluated only

one result.

Simulation

The decision-maker simulates an action in his/her imagination to evaluate if the

action is satisfactory. The steps to be taken are simulated mentally to identify po-

tential problems that could be encountered and how the problems might be handled.

Depending on the simulation, decision-makers might implement the action as-is, mod-

ify it, or reject it and examine another action.

When developers evaluate search results, they do mental simulations of results

but they also can do real simulations because they have access to source code that

they can immediately copy and try in their development environment. We found that

developers perform actual testing in an IDE for 45% of opportunistic searches, while

they use mental simulation for 31% of opportunistic searches. For 24% of searches

developer did not perform any simulation. Table 5.9 shows the frequency of searches

for each type of simulation classified by the different software problems developers

want to solve.

Coding/Testing For 45% of opportunistic search sessions, developers actually tested

the source code they found on the Web in an IDE to evaluate a candidate. For

example, when Bob was evaluating candidates he said “I am not sure if this

would work but lets try.” Bob tried the source code and it did not work, then he

made some changes and it worked and he stopped the search. This evaluation
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Remembering/
Fact Finding

Clarifying

Learning

Looking for Open 
Source Projects or 

Software Tools 

Coding/
Testing Mental

13 8

17 6

2 8

3 13

SUBTOTAL 3 (19%) 13 (81%)

1

14

2

0

0 (0%)

Simulation No 
Simulation

SUBTOTAL 32 (45%) 22 (31%) 17 (24%)

TOTAL 35 (40%) 35 (40%) 17 (20%)

Opportunistic
Searches

Non-Opportunistic
Searches

Table 5.9: Simulation Used by Type of Software Problems

by coding and testing mainly happened when developers found source code in

the search results and they were trying to remember syntax, clarify implemen-

tation details, or fix bugs. Often, developers read the source code and typed it

themselves in an IDE. It was not frequent for them to copy and paste lines of

code. After writing the source code, they ran it, and they immediately knew if

it worked or not. If it worked, they stopped the search and if it did not work

they looked for another promising candidate or gave up the search.

Mental Simulation/Understand Information For 31% of search sessions, devel-

opers read and understood the information. In such cases, developers did not

actually test source code but just read the information or watched videos of

demos, which helped them make decisions. We observed this type of simulation

when developers were trying to learn new concepts, or when they were looking

for information about errors.
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No Simulation For 24% of opportunistic search sessions, developers did not perform

any simulation because they did not find what they were looking for and they

decided to give up on the Web search to solve their software problem. Developers

gave up mostly on searches to clarify implementation details and to find out

how to fix bugs.

5.3.4 Developers do not Make Recognition-Primed Decisions

for Non-Opportunistic Searches

In the previous subsection, we explained that developers make Recognition-Primed

Decisions when they are performing opportunistic searches. For this type of search,

developers evaluate candidates in a serial way and decisions are made quickly. In this

subsection, we explain that when developers perform non-opportunistic searches they

do not make recognition-primed decisions. Decisions in this type of search are usually

done comparing several candidates and decisions are not rapid. Rather, deciding on

an open source project can take more than one day. We describe what are the

characteristics of these searches that make the recognition-primed decision model not

completely suitable to identify these non-opportunistic searches.

Situation Recognition in Source Code Search on the Web

When developers perform non-opportunistic searches, they perform situation recog-

nition but the actions that they take do not match the characteristics of the RPD

model. Developers mainly perform comparison of alternatives given a set of criteria

to evaluate different open source projects. We give details for each aspect of situation

assessment: goals, expectations, actions, and relevant cues.

Goals The main goal of non-opportunistic searches is to find Software Tools or Open
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Source Projects to be integrated into developers’ source code or environment to

solve a software development problem.

We discussed this type of software problem in Section 4.2.1.

Expectations When developers are performing non-opportunistic searches, the search

targets they want to find are Open Source Projects, Software Tools, or infor-

mation related to them.

We discussed these search targets and how frequently they were used for each

type of software development problem in Section 4.3.2.

Actions When developers look for open source projects, they mainly (for 75% of

non-opportunistic searches) read information they found after visiting one result

from one query as seen in Table 5.6. In few cases, they evaluate more than one

result when they perform one or multiple queries.

Relevance Cues Based on our observations and answers from developers from field

studies, laboratory experiment, and focus group, we identified 10 types of cues

developers use to evaluate search results. We described these evaluation cues

for non-opportunistic searches in section 5.2.

Option Evaluation

We analyzed the search sessions in our field studies and laboratory experiment to

determine how developers perform the evaluation of candidates for non-opportunistic

searches. From our field study, we found that developers usually do comparison

between search sessions to find a solution. We could not observe this behaviour in

our laboratory experiment because developers only did one search session for a single

task. Due to this restriction, developers did serial evaluation or compare candidates

within the same search session.
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Serial When developers were looking for information related to open source projects,

they sometimes evaluated candidates one after the other without making a

comparison between them. In our field studies, we found that developers did a

serial evaluation of results for only 25% of non-opportunistic searches. However,

we found from our laboratory experiments, that developers performed a serial

evaluation of candidates for half of the non-opportunistic searches.

Comparison within a search session Developers also perform the evaluation of

results by comparing promising candidates in a search session. We learned

from our field studies that developers do not perform this type of evaluation

when they look for open source projects. However, from our laboratory exper-

iment, we found that developers did this type of evaluation for 44% of non-

opportunistic searches. We believe this difference is influenced by the fact that

developers could not do comparison between search sessions in the laboratory

experiment. Instead, they did serial evaluation or comparison within the 10

results given in the result list.

Comparison between search sessions We considered that developers evaluated

results by comparison between search sessions when they compared the results

of a search session with results from another search session. The comparison was

not done between candidates visited within a search session as in the previously

discussed option evaluation strategy. In this case, developers needed multiple

search sessions, or what we call a problem solving sequence as indicated in

Appendix A, to select an open source project.

From our field studies, we found this type of option evaluation for 69% of non-

opportunistic search sessions. We observed 11 of these searches and they were

done to collect information about open source systems in order to select one to

reuse. The results of each search session were compared to the results of other

113



search sessions. When developers looked for information for candidate systems,

they mainly visited only one result to read documentation in a search session,

but they then compared the result of that search session with results from other

search sessions to find information about other open source candidates. When

developers evaluated open source candidates, they compared the information

of different systems in terms of price, installation requirements, architecture,

type of support, popularity, and match with the project requirements. We did

not observe this type of candidate evaluation in our laboratory experiments be-

cause participants only evaluated the 10 search results given by the researchers.

Participants were not allowed to modify the query or perform another search

session for a single task.

No Serial or Comparison In this group, we included the searches where develop-

ers evaluated only one result. In both our field studies and laboratory exper-

iments, developers performed only one non-opportunistic search in which they

evaluated only one search result and chose it.

Simulation

Based on our results from field studies, we found that developers perform men-

tal simulation of results for 81% of non-opportunistic searches. This is mainly be-

cause developers cannot immediately try open source projects due to the installation

requirements, so instead they read information about them. Only for 19% of non-

opportunistic searches, developers actually tried the open source project as seen in

Table 5.9.
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5.4 Discussion

5.4.1 Comparison of Our Results and Results in the Litera-

ture

We found six empirical studies that report on how developers evaluate source code

results to select one option that satisfies their source code needs. Two studies re-

port on questionnaires [8, 65], two on lab experiments [55, 59], one on a laboratory

experiment and log analysis [5], and one on interviews [34]. We compare our results

with those found in the literature for the evaluation criteria used when developers are

performing opportunistic searches, and then for the criteria used when developers are

performing non-opportunistic searches.

5.4.2 Evaluation of Results in Opportunistic Searches

We summarized the empirical results in the literature that report on the evaluation

of opportunistic searches in Table 5.10. This table includes information about the

judgment strategy, judgment criteria, and the time spent during a session for some

source code needs. Information in this table is based on findings from Brandt et al.

[5] who reported on how developers evaluate code snippets to remember syntactic

programming language details and routinely-used functionality, to clarify how to im-

plement functionality in a specific programming language, and to learn unfamiliar

concepts.

From our empirical studies we have learned that when developers try to remember

syntax details, they often review only one search result. This partially matches with

the literature stating that developers review zero or one search result when they try
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- Zero or one result click
- View only the search result snippets

Judgment Strategy

Remembering/
Fact Finding

Clarifying

Learning
- Several result clicks
- Rapidly skim several result pages opened in tab 
browsers

Judgment Criteria Time Spent

- Developers knew exactly what 
information they were looking for

- Less than 1 minute

- Quality based on cosmetic features: 
prevalence of advertisement

- Around 1 minute- Few result clicks - Developers can easily recognize 
the code once they find it

- Tens of minutes

Table 5.10: Relevance Cues Reported in Literature for Opportunistic Searches

to remember syntax details. We found that it was not very common for developers

to review only the search results to find a snippet. Also, we observed that this type

of search took longer than reported in the literature. We found that on average,

they take 3 minutes while the literature indicates they take less than a minute. This

difference could be due to the fact that the time we consider is the time to solve a

problem, which includes the use of the information, while the time reported in the

literature only reports on the search on the Web. In addition, our studies have added

to the current knowledge by finding that for this type of search, developers mainly

use the result order, the presence of examples, the Web host domain, and social cues

to evaluate search results. We also found that developers often use the source code

found to test it in an IDE.

Our empirical studies showed that when developers are looking for information to

clarify how to implement functionality in a specific language or to find information to

fix bugs, developers visit multiple results from the result list. Our results agree with

the literature in that developers visit many search results, but our studies give more

precise information on this phenomenon. We found that developers perform between

1–8 queries for this type of search and they review between 2–13 results in a serial

way. We also found that developers used 3 relevance cues among these: result order,
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Web host domain, page type, and title. When developers found promising candidates,

they mainly tested them in an IDE. In addition, we found that on average searches

to clarify syntax information take around 5–6 minutes until the problem is solved. In

contrast, Brandt et al. reported that this type of search takes around one minute.

We learned from our empirical studies that when developers want to learn new

concepts, they commonly perform multiple queries and visit multiple results. This

finding confirms the literature. However, we provide more details on the number of

queries and results visited. We found that developers review between 2–13 results

from 2–8 queries. Also, we found that developers mainly use 2 or 3 relevance cues

to evaluate results including the result order, Web host domain, page type, and title.

Developers prefer Web pages that come from trustworthy sources such as wikipedia,

IBM, Microsoft, and official documentation. However, these results do not confirm

the literature which states that cosmetic appearance is a relevance cue to evaluate

results for learning. According to the literature, developers make judgments about

the quality of the Web page based on the prevalence of advertisement, the fewer

advertisements, the better the quality. Based on our empirical studies, this type of

search takes shorter than what is reported in the literature. These searches take on

average 6 minutes and not tens of minutes as indicated in the literature. We also

found that developers mainly process mentally the information that they found.

5.4.3 Evaluation of Results in Non-Opportunistic Searches

Four empirical studies reported on how open source components and projects are

evaluated [8, 34, 55, 65]. Table 5.11 shows a comparison of the criteria reported on

these studies. The number that precedes some criteria indicates its ranking. For

example (1) indicates that a criterion was the one most used by developers who
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participated in the study. Chen et al. included 10 criteria in their study, but they

only reported on the most used criterion and the two least used. Umarji et al. and

Sim et al. reported the ranking of the 5 criteria they identified. Madanmohan and

De’ reported seven criteria but did not include raking information for three of them.

Table 5.11: Relevance Cues Reported in Literature for Non-Opportunistic Searches

All these four studies agree that requirements or functionality are the most used

criteria to evaluate open source software. Licensing was mentioned in all the studies,

but Umarji et al. and Sim et al. reported it as the second more important criterion.

For Madannmohan, the second most important criterion was usability or component

characteristics such as flexibility and design consistency. This criterion also matches

with the quality of components mentioned by Chen et al. Cost was mentioned by all

the studies, two of them reported it as the third most important criterion and Chen

et al. reported it as the second least important criterion. Sim et al. and Umarji et al.

reported user support availability as the fourth most important criterion. However,

Chen et al. report it as the least important criterion. The last important criterion

for Umarji et al. and Sim et al. was the level of project activity. These two last

criteria match the maintenance and support criteria mentioned by Madanmohan and
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De’. Finally, Madanmohan and De’ indicated that familiarity, i.e. if developers have

used the open source software before, is the most used criterion when resources and

time are limited during the selection process.

From our empirical studies, we have found that looking for open source projects

is not a common activity for developers in the workplace, but when they do it, this

activity can take more than a day. We also found that there are two types of evaluation

done when developers look for open source projects. One evaluation is done within

a search session to find information about open source candidates and the other is

to compare the information about different open source projects. When developers

evaluate results within a search session they mainly use two relevance cues among the

result order, Web host domain, page type, and title. The literature reports only on

the criteria used by developers when they perform evaluations between search sessions

and not on the criteria used to evaluate results within a search session for this type

of search. The criteria we observed for the evaluation between search session have

been reported in the literature. According to our observations, developers care about

functionality, the system architecture, installation requirements, cost, and also what

other people think about a system.

5.4.4 Laboratory Experiment versus Field Studies

Results from our laboratory experiment and field studies contradict each other on

how developers evaluate search results. We believe that the difference in results is

influenced by mainly four factors: the presentation of search results, the search results

available for evaluation, the questions asked during the studies, and the nature of

the open source project task. All these factors that influenced the difference in our

results lead us to conclude that it is hard to observe naturalistic decision making in
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a laboratory experiment.

The presentation of search results was different in the laboratory experiment and

in the field studies as seen in Figures 5.2 and 5.3. For the field studies, developers

used the search engine or Web page they preferred. Developers mostly used Google

to start a Web search. Thus, they mainly evaluated search results provided by Google

which shows the title, a small description, and a link with more information about

the search result. In contrast, for the laboratory experiment, we presented search

results augmented with technical information (lines of code, number of classes, and

number of methods) and social information (number of favorites, number of copies,

and percentage of positive reviews) about the source code in each result. The fact that

we included these technical and social cues in the search results influenced our findings

in two ways. First, if a relevance cue was available in the result list and was perceived

as useful, developers used the information provided during evaluation of results with

greater frequency. For example, in the field studies, developers on average used social

cues for 13% of Web searches. However, in the laboratory experiment, developers

used one of the social cues provided — the percentage of positive reviews — for

half of Web searches. But showing the information is not enough; the information

must be perceived as useful for developers. For example, although we showed some

technical cues such as number of classes and number of methods, these were not used

very often. Both were used for 13% of Web searches. Second, developers used the

information shown to evaluate search results by looking only at the result list and

without clicking search results. When developers evaluated Google search results,

they needed to click a search result in order to read more details about the result and

find out the number of lines of code or the number of positive reviews, if available.

However, in the laboratory experiment we provided that information as a summary

in the result list. Making the information available in the result list changed the

way developers evaluated results because in some cases they evaluated results by just
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looking at the result list and they were also able to make comparisons between results

by just looking at the result list.

Another factor that explains the difference between the findings from our labo-

ratory experiment and our field studies was the search results that were available for

evaluation. In our field studies, developers did not have any restriction on the search

results they could visit or the number of queries they could perform. However, in

our laboratory experiment, we gave 10 results and we told participants that the right

answer to complete the task was in one of them. Developers could only evaluate those

10 results and they were not allowed to perform query refinement. This restriction in

the number of available search results influenced how developers evaluated the results.

In the laboratory experiment, developers often methodically evaluated results one by

one in order, which was rarely seen in our field study. Instead, in the field study,

developers glanced at the results and started visiting some of them based on some

cues. In addition, all the results showed in our laboratory experiment had the same

layout and looked the same. The only difference was the text and code inside. That

meant that we could not see if cosmetic appearance was used as an evaluation cue. In

contrast, we observed in our field studies that developers used cosmetic appearance

to evaluate results in 13% of Web searches.

The questions that researchers asked during the experiment also influenced the

results. In the field study, we asked open-ended questions related to the evaluation

of results; we asked “What criteria did you use to select a candidate from the result

list?” In contrast, in our laboratory experiment, we asked participants to complete a

paper questionnaire after each task. This questionnaire asked how useful each piece

of information (i.e.: title, description, lines of source code) in the result list was on

a scale of 1 to 5. Asking specific questions about each piece of information made

participants think about whether they used a specific piece of information or not and

121



how useful it was. In our field studies, we did not ask explicitly for each piece of

information; developers mentioned the ones that were relevant to them and that they

remembered. For example, developers in the field studies often did not mention the

title or the description as cues used. Developers mentioned that they used these cues

for 14% and 13% of Web searches. However, in our laboratory experiment developers

indicated using the title for all the searches and the description for 97% of searches.

We believe that developers also used the title and description often in our field studies

but developers just did not articulate it when asked and they did not make evident

use of it. Developers often glanced at the title and description quickly and they did

not mention it as a relevance cue when asked. A similarity between the laboratory

experiment and the field studies, is that, in both cases, developers had a hard time

remembering which cues they used even though we asked them about these just

seconds or minutes after they finished a search.

Finally, the nature of the non-opportunistic searches also impacted the results. In

the laboratory study, developers completed a task in which they had to evaluate 10

open source projects to find a piece of source code or a jar file that they had to reuse

and integrate into their source code in 15 minutes so that a test case would pass. The

task was one of these two: 1) to find source code to compare two text files and show

the differences or 2) to look for some code that will read in a CSV file and place the

data into a list of strings. In the laboratory, developers showed frustration completing

this task and mentioned that this would not be the way they would look for source

code. In our field study and focus group, we found that when developers look for

a piece of source code, they do not look at open source project repositories to find

it. They usually look on Google and find it in forums, tutorials, or official API Web

pages. Developers usually look for open source projects when they are looking for a

standalone system that they do not need to modify, and then do some research on

how to integrate it into the other systems they have in place. This kind of search for
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open source projects are uncommon and the evaluation of alternatives can take more

than a day. We only observed one of our 24 developers doing this type of search in our

field studies. He was looking for an open source project to do data mining of logs and

to manage alerts. He looked at least at 10 different candidate systems and at the end

of the day he was not done with the evaluation and he was planning on continuing

the next day. In addition, in our laboratory experiment, participants were allowed to

evaluate only the 10 open source projects we provided in the search result list. Due to

this restriction, participants evaluated alternatives by comparing results within the

search session. However, in our field study, we observed that developers devote one

search session to look for information about each open source candidate, and then

compare information between search sessions to select an open source candidate.

From our analysis of these differences between our findings, we conclude that labo-

ratory settings make it hard to observe naturalistic decision-making being performed.

This is due to the fact that in a laboratory experiment, there are many variables that

we controlled (such as the time, the results showed, the layout of results, the nature of

the task) that affected how developers actually searched for source code and imposed

restrictions that sometimes do not exist in a workplace environment.

5.5 Summary

In this chapter, we have learned that developers evaluate source code search results

differently when they are performing opportunistic searches and non-opportunistic

searches. Decisions made during the evaluation of results are often quick and devel-

opers have a hard time articulating their evaluation process. When developers evalu-

ate results for opportunistic searches they make quick judgments using Recognition-

Primed Decisions. Developers first recognize the situation by identifying the goal,
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relevance cues, expectations, and actions that match with a previous similar experi-

ence. Developers evaluate search candidates in a serial way by mental simulation or by

actually testing a candidate in an IDE until they find a good-enough candidate that

solves the problem. On the other hand, when developers evaluate candidates for non-

opportunistic searches to find an open source project, they do a methodical and logical

comparison of open source candidates. For each open source candidate, developers

gather information for a set of characteristics such as the installation requirements,

architecture, and cost. Developers compare candidates using these characteristics and

choose an open source project. The decision to choose a specific open source project

can take more than a day.
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Chapter 6

Use of Information in Web

Searches

In the previous chapters, we have discussed what kind of software problems motivate

software developers to perform Web searches and also how they evaluate search results

to find a solution to their software problems. In this chapter, we present results from

our empirical studies on how developers use the information they found on the Web

searches to efficiently solve their software problems.

We first present our results from field studies, laboratory experiments, and focus

groups on how developers use the information they find on the Web. Then, we

compare our results with those found in the literature. We also analyze the efficiency

of Web searches in terms of success and length of time to help developers solve

problems. In addition, we discuss when developers prefer to copy and paste source

code from the Web or when they prefer to read it and use it to guide their coding.

Finally, we present a summary of this chapter.
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6.1 Use of Information in Web Searches

Based on our field studies, we learned that developers use the information they found

on the Web differently for opportunistic and non-opportunistic searches. Developers

often use the information they found for opportunistic searches by reading information

from the Web and then understanding the information or using it as a reference for

coding. Developers did not use any information for almost a third of their opportunis-

tic searches because they did not find anything useful on the Web. When developers

were performing non-opportunistic searches to find open source projects, they mainly

read and understood the information they found for each candidate system. In few

cases, they also download the software and try it. For 13% of these searches, devel-

opers did not find any useful information on the Web. Observations from our focus

groups reinforce our field study results. However, our laboratory experiment results

contradict the results from our field studies.

We analyzed our observations of developers and also the answers that developers

gave us in our empirical studies. In our field studies, we observed how developers

used the information they found on the Web. Also, after developers finished a Web

search, we asked them: “After you selected a piece of source code or information

related to source code, how did you use it to complete the task you were working on?”

In our laboratory experiment, we observed how participants used the information

they selected from the search results we provided. In our focus groups, we asked

participants: “How using or reusing source code from each group is different?” after

they finished classifying search targets in the card sorting game.

We present our results on how developers use the information they selected from

the Web for opportunistic searches and for non-opportunistic searches. Table 6.1

and Table 6.2 summarize our results from field studies and laboratory experiments
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respectively. These tables show the different uses that developers give to information

they found on the Web by the types of problems developers want to solve.

Remembering/
Fact Finding

Clarifying

Learning

Looking for Open 
Source Projects or 

Software Tools 

Read and 
Understand

Read and 
Code

Copy, Paste, 
and Modify 

Copy and 
Paste

Download 
and Try it

8 10

9 8

8 2

12 0

1

3

0

0

SUBTOTAL 12 (75%) 0 (0%) 0 (0%)

1 0

1 1

0 0

0 2

0 (0%) 2 (13%)

Use of Information

SUBTOTAL 25 (35%) 20 (28%) 4 (6%)2 (3%) 1 (1%)

TOTAL 37 (43%) 20 (23%) 4 (5%)2 (2%) 3 (3%)

Opportunistic
Searches

Non-Opportunistic
Searches

Nothing Useful 
Found

2

15

2

2

2 (13%)

19 (27%)

21 (24%)

Table 6.1: Use of Information by Type of Software Problems from Field Studies

6.2 Use of Information in Opportunistic Searches

Based on results from our field studies, when developers perform opportunistic searches

to remember syntax details, to clarify implementation details, or to learn new con-

cepts, they often read the information they find on the Web to understand it or to

use it as a reference to code. Only in few cases, developers copy, paste, and modify

or copy and paste, or download software and try it as seen in Table 6.1. Developers

did not use the information they found because it was not useful for 27% of Web

searches. However, results from our laboratory study did not match with our results

from our field studies. In our laboratory experiments, we found that developers often

copy, paste, and modify source code or just copy and paste source code.
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Copy, Paste, 
and Modify

Copy and 
Paste

14 (88%)2 (13%)

5 (31%)4 (25%)

0 (0%)0 (0%)

14 (88%)2 (13%)

Use of Information Download 
and Try it

Read and 
Code

TOTAL 19 (59%)6 (19%) 14 (44%)2 (6%)

Opportunistic
Searches

Non-Opportunistic
Searches

Table 6.2: Use of Information by Type of Software Problems from Laboratory Ex-
periments

In our empirical studies, we identified 6 different types of use that developers gave

to the information they found on the Web. We explain each of the categories of use

we identified.

Read and Understand We observed that some developers use the information they

found on the Web to read it and understand it. They did not use it directly to

create or modify source code. Instead, they use it to understand or remember

a concept, to understand why an error occurs, to form an opinion for a conver-

sation, or to reply an e-mail. For example, a developer saw in a log file some

warnings related to “fakeweb.” He did not know what was fakeweb, so he de-

cided to look for that on the Web. He found the definition, read it, understood

it, and continued with his activities. Another developer wanted to “figure out

if PostgreSQL supports time as data type.” He was asked about that by a co-

worker, so when he found the information on the Web, he read it, understood

it, and prepared an e-mail to his co-worker.

In our field studies, we found that developers use the information they found

on the Web to read it and understand it for 35% of opportunistic Web searches.
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However, we did not observe this type of use in our laboratory studies. We

believe these conflicting results are due to the fact that developers were asked

to complete a coding task in the laboratory experiment and for that reason they

often used the information to code. Similarly, in our focus groups, developers

did not explicitly mention this type of use.

Read and Code When developers find a piece of source code on the Web that could

help them solve a software problem, they often do not copy and paste it, but

instead developers read it and use it as a reference to write their own source

code. In our field studies, we observed that developers took source code from

the Web as a reference for 28% of opportunistic Web searches, mainly when de-

velopers were trying to remember syntax details or when they wanted to clarify

implementation details. For example, a developer wanted to remember the syn-

tax for the SQL command JOIN. He found some examples on the Web, read

them, and created his SQL statement without copying and pasting anything

from the Web. In our focus group, many developers also indicated their prefer-

ence for using information from the Web as reference examples or to get ideas

for implementation. A participant in focus group 4 indicated that he rarely

copies code, instead he uses it as a reference by putting the examples from the

Web side to side to his coding environment, as he mentioned: “It just guides

my coding. I just keep it side by side while I am coding. When I have questions,

I look at it. From documentation, I rarely copy code.” Also, a participant in

focus group 1 emphasized the importance of understanding the source code he

finds. Our participant indicated: “For documentation, you are not going to

use their source. I mean, you will use it, but when you are looking at it using

the documentation, you are not going to copy the documentation. You would

never going to copy and paste, you are going to use what they say but you are

supposed to understand what it means, because sometimes they will give you the

129



parameters, but then you fill that in yourself, you are just looking for the name

of the method. You apply the explanation, you apply what you learn to create

your own source.” We did not observe any participant in our laboratory ex-

periment who read the source code and used it as a reference. All participants

completing tasks where they had to find a snippet of source code, copied and

pasted source code from the Web.

Copy and Paste After developers found information that could solve their software

problem, they copied it from the Web and pasted it to use it without making

any modification to the information taken. In our field studies, we found that

developers copied and pasted information without making any modification to

it, only for 3% of opportunistic searches. In one case a developer copied a

line with the URL to check the status of a server and pasted it into a Web

browser to check the status of his server. Another developer needed to include

a quick reference of log4j (a log management library) in a document, so he

found it in a pdf on the Web and copied and pasted it from the pdf to his

document. In our laboratory experiments, developers copied and pasted lines

of source code for 13% (2 out of 16) of opportunistic Web searches. In both

cases, developers copied a line of source code that included a regular expression.

In our focus groups, participants indicated they sometimes copied and pasted

source code from tutorials. One participant in focus group 1 emphasized that

he does not copy and paste source code from tutorials often, except when he is

learning, as he mentioned: “For tutorial, you are not going to copy and paste

the examples much, you might do it initially, for learning and that is it, so

hopefully you will learn it and you will not need the examples anymore and you

can do it yourself.” Also, a participant in focus group 2 commented on the

fact that sometimes developers find a piece of source code that they can reuse,

he indicated “Today, I actually copied and pasted a piece from a tutorial to do
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a unit test, that happened to me like an hour ago. Depending on the type of

tutorial and forum, you can find pieces that you can copy and paste.”

Copy, Paste, and Modify Once developers found on the Web a good-enough so-

lution to a software problem, we observed that some developers copied a piece

of source code they found on the Web, they pasted it into their own source

code, and they made some changes to tailor it to fit their needs. In our field

studies, we observed that developers copied, pasted, and modified source code

from the Web for only 6% of opportunistic Web Searches. They copied between

3–11 lines of source code. Developer used the information from the Web in

that way when they wanted to remember syntax details or when they wanted

to clarify implementation details. However, in our laboratory experiment, we

observed that participants copied, pasted, and modified the source code from

search results for 88% of opportunistic searches. We believe that the difference

in results between these two studies is impacted by the fact that participants in

the laboratory had to complete implementation tasks and they had source code

available for all the search results. Similarly, most of participants in our focus

groups mentioned that when they find examples or source code snippets, they

often copy, paste, and modify it. As mentioned by a participant in focus group

10: “For code snippets or examples, I copy and paste, modify variable names

and add some comments to understand.” Developers also mentioned copying,

pasting, and adapting source code found in forums, as indicated by a partici-

pant in focus group 4: “I think it is the same for forums and snippets because

they look alike in the way they are small and they are used to solve a problem

that others had but I might not have the same problem as them, so I would copy

and paste but most of the time I would modify to suit my problem.”

Download and Try it Rarely, developers had to download software to find solu-
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tions to their opportunistic problems. In our field study, we observed only one

search of this kind. In this case, a developer was having an error when running

a web service. He performed a Web search and found a WSDL he could use

to compile the Web service. He downloaded the WSDL, used it to compile his

web service, and the error was fixed. We did not observe this type of use in our

laboratory experiment.

Nothing Useful Found Sometimes, developers did not use information from the

Web after performing a Web search because they did not find anything useful

to solve their software problems. In our field studies, developers did not find

useful information from the Web for 27% of opportunistic Web searches.

6.3 Use of Information in Non-Opportunistic Searches

In the previous section, we presented our results on how developers used the infor-

mation they found on the Web when they were performing opportunistic searches. In

this section, we will discuss our results from our empirical studies on how develop-

ers use information they find on the Web when they are looking for an open source

project.

From our field studies, where we observed a developer performing Web searches for

a day to find an open source project, we found that developers mainly read information

from the Web about potential open source candidates. They read information about

the architecture of the systems, watched some demos of the systems, and read what

other people think about the project. Developers read information for 75% of non-

opportunistic Web searches. In few cases, for 13% of non-opportunistic Web searches

developers also downloaded software to actually install it and try it. Developers in our

focus group also mentioned that they sometimes download the open source project,

132



as indicated by a participant in focus group 12: “For systems, I will download and

try it.” Also, they commented on the importance of knowing others’ opinion on the

system, as a participant in focus group 9 mentioned: “For full systems, I read very

carefully what other people think, who is using it. I download it and see the coding

style. What other people think is very important.”

Our results from our laboratory experiment did not match with our results from

our field studies. In our laboratory experiment, developers downloaded a jar file from

an open source project for 88% of non-opportunistic searches as seen in Table 6.2. Due

to the fact that participants had to complete an implementation task using the jar

file from the open source project, developers also had to look for information on how

to use the jar file and what methods invoke to make the test case pass. Notice that

the sum of percentages in the row for non-opportunistic searches in Table 6.2 is more

than 100% because developers sometimes used the information in at least two ways:

to find the appropriate jar file and then to find out how to use it. Developers copied,

pasted, and modified examples on how to use the jar for 31% of non-opportunistic

searches and they just copied and pasted for 25% of this type of Web searches. Only

for 13% of non-opportunistic searches, developers use the examples they found as a

reference to write their own source code.

6.4 Discussion

6.4.1 Comparison of Our Results and Results in the Litera-

ture

Once developers find a suitable piece of source code on the Web, they need to integrate

it to their current knowledge or their current source code to solve the software devel-
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opment problem that motivated the search. We are aware of three empirical studies

that report on how developers use source code they found on the Web. One of them

[5] reports on how developers use code snippets after they are found in opportunistic

searches and two of them [8, 34] report on how developers use open source projects

after they are selected in non-opportunistic searches. We first present our discussion

on how our results agree or contradict the literature results for opportunistic searches

and then for non-opportunistic searches.

6.4.2 Use of Information in Opportunistic Searches

Brandt et al. provide some evidence on how developers use code snippets on the Web

to learn, clarify, and remember, as summarized in Table 6.3.

- View search results or API documentation to remember syntax
- Copy and paste lines of code

Use of Information Reported in the Literature

Remembering/
Fact Finding

Clarifying

Learning

- Copy several lines, paste, and adapt code to their needs

- Copy dozens of lines (approx. 10 lines each time), paste, and 
adapt code to their needs

Table 6.3: Use of Information Reported in Literature for Opportunistic Searches

We found from our empirical studies that when people perform Web searches to

remember syntax details, they often read the information and use it to code or to

understand it. In few cases, developers copy and paste source code. This agrees with

the literature that indicates that developers use the information to read and also to

copy and paste. However, the literature did not provide information on how frequent
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each type of use is. We found that for 82% of this type of searches developers read the

information and understand or copy, and only for 9% they actually copy information

from the Web.

Based on our results from empirical studies, we learned that when developers

perform searches to clarify implementation details or fix bugs, if they find useful

information on the Web, they will often (46% of clarifying searches) use it to read it

and then to guide their coding or understand the information. However, this type of

use was not reported in the literature for clarifying searches. We also found that for

few Web searches, only 11% of these type of searches, developers copied information

from the Web. They copied between 3–11 lines of code. This result agrees with results

in the literature that indicate that developers copy and paste several lines of source

code when they want to clarify. We also found that for 41% of this type of searches

developers did not find any useful information. However, the literature did not report

on developers not finding the information they were looking for. The differences

between our results and the ones found in the literature could be influenced by the

fact that our results discussed here came from field studies and the ones reported in

the literature came from a laboratory experiment.

From our empirical studies, we learned that when developers look for informa-

tion on the Web to learn new concepts, they often use the information to read and

understand the concepts and sometimes also to code. Our results contrast with the

literature that reports that when developers look for information to learn, they copy,

paste, and adapt dozens of lines of source code. We did not observe any case of that.

Instead of copying and pasting, we observed developers reading the information they

found on the Web to incorporate it to their knowledge or to guide their coding.
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6.4.3 Use of Information in Non-Opportunistic Searches

In our empirical studies, we observed that when developers looked for open source

projects, they used the information they found on the Web for each candidate system

to evaluate it and decide which candidate is more appropriate for their needs. Some-

times developers also downloaded a candidate system and tried it. Our results are

different from the literature. Our results emphasize the use of information for eval-

uation of candidates, and not the use after a system was selected as reported in the

literature. In our observations, we saw a developer performing searches to evaluate

open source candidates but none of our participants actually performed searches to

use the chosen open source candidate.

Chen et al. and Madanmohan and De’ studied how open source projects are

used after they are selected. Both studies agree in that it is very common to adapt

the open source software to integrate it to the developer’s environment. Chen et al.

reported that 45% of questionnaire participants needed to change the source code to

fix bugs. This seems to be a very high percentage and could mean that the quality of

open source software is not good. However, we expect the quality of open source to

improve over the years as reported by the Coverity Report [11]. It was also reported

that 39% of participants make changes for other reasons. These other reasons could

include customization and integration changes.

In addition to source code adaptation, Madanmohand and De’ also reported that

sometimes developers contact the author of source code to seek permission for use

and extension. In other cases, developers do not look at the source code even though

they have access to it. This happens when developers do not need to modify the

source code and the software teams do not have enough resources (knowledge, skills,

manpower) to do it.
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6.4.4 Are Developers Efficiently Solving Software Problems

by Searching on the Web?

In our empirical studies, we found that developers efficiently solve software problems

by searching the Web to remember syntax details, to learn concepts, or to find infor-

mation to evaluate open source projects. However, when developers need to clarify

implementation details or find solutions to fix bugs, searching for information on the

Web is not very efficient to help them solve software problems. We define efficiency

in terms of the success of a Web search to help solve a software development problem

and in terms of the time it takes to solve a problem using a Web search, as indicated in

Appendix A. We discuss our results for efficient and non-efficient problem solving by

using Web searches. Table 6.4 shows the success rate and the time successful searches

took for each type of software problem. Similarly, Table 6.5 shows the failure rate

and the time failed searches took for each type of software problem.

Efficient Problem Solving by Searching on the Web

When developers perform opportunistic Web searches, they are highly efficient

when they look for information on the Web to remember syntax details or to learn

new concepts. Developers who searched the Web to remember or to find facts found

useful information on the Web and were able to use it to solve their software prob-

lems on average in 2.7 minutes for 82% of this type of searches as shown in Table

6.4. Performing Web searches to remember facts helped developers to solve software

problems in 1 second in the fastest case and in 9 minutes in the longest case. Simi-

larly, developers who decided to search on the Web to learn new concepts were able to

successfully solve 75% of their software problems in 5.9 minutes on average. However,

developers efficiently solved only 49% of software problems that required clarification

of implementation details in 6.2 minutes on average.
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In the case of non-opportunistic searches, developers were very successful when

they looked on the Web to find information related to open source projects they

were evaluating. Developers successfully found the information they were looking for

for 88% of this type of searches and they did it in 11.5 minutes on average. From

our empirical studies, we have information on how successful developers were finding

information to evaluate open source candidates. However, we do not have information

on how successful developers were by actually using the open source project they

selected.

Remembering/
Fact Finding

Clarifying

Learning

Looking for Open 
Source Projects or 

Software Tools 

Length  of Searches
Success

Min. Avg. Max.

18 (82%) 1 sec

18 (49%) 41 sec

9 (75%) 2 min

14 (88%) 2 min

2.7 min

6.2 min

5.9 min

11.5 min

TOTAL 59 (68%) 1 sec 8.2 min

9 min

38 min

18 min

46 min

46 min

SUBTOTAL 45 (63%)

SUBTOTAL 14 (88%) 2 min 11.5 min 46 min

Opportunistic
Searches

Non-Opportunistic
Searches

1 sec 38 min4.9 min

Table 6.4: Success and Length of Efficient Searches by Type of Software Problems

Non-Efficient Problem Solving by Searching on the Web

Looking for information on the Web is not very efficient to solve software prob-

lems that required clarifying implementation details or finding solutions to bugs.

Developers failed to solve these types of problem in 51% of cases as seen in Table

6.5. On the other hand, less than 26% of the other types of opportunistic and non-
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opportunistic searches failed. Although developers were not very successful to solve

problems to clarify implementation details or fix bugs, they decided to give up un-

successful searches in 4.8 minutes on average which is 1.4 minutes faster to what

an average successful search of this type takes. Similarly, developers were faster in

giving up unsuccessful searches to look for information to evaluate open source can-

didates. Developers gave up this type of searches in 3.4 minutes on average which is

8.1 minutes faster than an average successful search of this type.

Remembering/
Fact Finding

Clarifying

Learning

Looking for Open 
Source Projects or 

Software Tools 

Length  of Searches
Failure

Min. Avg. Max.

4 (18%) 1 min

19 (51%) 8 sec

3 (25%) 3 min

2 (13%) 3 min

4.3 min

4.8 min

6.3 min

3.4 min

TOTAL 28 (32%) 8 sec 4.3 min

7 min

15 min

12 min

4 min

15 min

SUBTOTAL 26 (37%)

SUBTOTAL 2 (13%) 3 min 3.4 min 4 min

Opportunistic
Searches

Non-Opportunistic
Searches

8 sec 15 min5.1 min

Table 6.5: Failure and Length of Non-Efficient Searches by Type of Software Problems

We found that developers gave up 32% of Web searches as shown in Table 6.5. We

analyzed the reasons that motivated developers to give up search sessions as well as

the actions they followed to solve the software problem. Table 6.6 shows the reasons

that developers had to give up search sessions by type of software problems and Table

6.7 shows the actions that developers followed to solve a problem after they gave up

finding a solution on the Web.
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Remembering/
Fact Finding

Clarifying

Learning

Looking for Open 
Source Projects or 

Software Tools 

No Solution 
Found

Found 
Starting Point 

to Solution

2 0

15 4

2 0

2 0

SUBTOTAL 2 (13%) 0 (0%)

1 1

0 0

1 0

0 0

0 (0%) 0 (0%)

Reason for Giving 
Up Search

Source Code 
did not Work

Inconclusive 
Results

SUBTOTAL 19 (27%) 4 (6%) 2 (3%) 1 (1%)

TOTAL 21 (24%) 4 (5%) 2 (2%) 1 (1%)

Opportunistic
Searches

Non-Opportunistic
Searches

Table 6.6: Reasons for Giving Up Search Sessions by Type of Software Problems

Developers mainly gave up searches because they did not find a solution that

could help them to clarify implementation details. After developers decided to stop

a search session for this reason, they commonly code the solution by themselves,

postponed dealing with the problem, or ask for help to a co-worker. Only in one case

a developer decided to look for the information she was looking for in a book and

another developer sent the question to a mailing list. We do not have information

about the actions developers took after they gave up 7 Web searches.

For 5% of Web searches, developers did not find the solution to their software

problems, but they found information that they used as a starting point to implement

a solution by themselves. For the 2% of Web searches that were given up because the

source code found did not work, developers solved the problem by coding a solution

by themselves or asking for help to a co-worker. Requesting advice from a co-worker

was also a way to solve a problem when developers found inconclusive results on the

Web.
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No Solution 
Found

Found Starting 
Point to Solution

Source Code did 
not Work

Inconclusive 
Results

Code Solution 
by Themselves

Communicate 
with Co-worker

Postpone Dealing 
with the Problem

Look for Info 
in a Book

6

4

1

0

2

0

1

1

TOTAL 11 (13%) 4 (5%)

4

0

0

0

1

0

0

0

4 (5%) 1 (1%)

Action after Giving 
Up Search

Send email to 
Mailing list

No Info about 
Action

1

0

0

0

1 (1%)

7

0

0

0

7 (8%)

Table 6.7: Actions after Giving Up Search Sessions by Reasons for Giving Up

6.4.5 Copying and Pasting Source Code versus Reading and

Using it as Reference

In our field studies, we found that developers prefer to read the information from the

Web and they use it to guide their coding instead of copying and pasting information.

However, this preference has not been reported in the literature that reports how

developers use information from the Web. We examined responses from our focus

groups and found mixed answers regarding which practice developers prefer: copying

and pasting source code versus reading and using it as reference. Some developers

have a personal preference for one of these practices, for other developers the practice

they use depends on the goal of the search, and other developers do not make any

distinction between these two practices.

Participants in focus group 5 started a conversation about their preferences for

copying and pasting source code versus reading and using it as reference after we asked

them about how they use information from the Web. Participant B clearly prefers

reading the information and using it to guide his coding by typing it by himself be-

cause this practice allows him to understand and learn the code. However, participant
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A prefers copying and pasting. Here we show an extract of this conversation.

“B: I will synthesize the documentation into my own understanding.

A: But what about the code in there?

B: I would take the ideas, added to my own understanding of the world. Close the

window and code my own thing.

A: It depends on how often I need to use it. I do not know.

B: Even if I do not close the window, I will not copy and paste.

A: You do not?

B: I will type it. I will personalize it to have fun, i will not copy and paste it.

A: I will copy and paste.

B: I will type it.

A: No, I will copy it and then delete what I do not need. What about if there are 50

lines of code?

B: Well, if I do not know something, I want to learn it.

A: OK.

B: Well, I just do not think I will learn if I just copy and paste.

A: That is true. I would rather copy and paste, but I think yours is a good principle.”

For other developers the decision of copying and pasting source code or reading

and typing by themselves depends on the goal of the search and the information they

find. For example, if developers are trying to fix a bug and they find information of

a similar problem in a forum, they do not expect to copy and paste the solution but

instead to adapt the solution to their needs as indicated by a participant in focus

group 4: “You are not looking for code that you are going to copy, you are looking

for a solution to a problem that you have or you are looking for something that will

allow you to change your code but you would very unlikely copy something from those

forums into your code. If somebody has a similar problem, has a similar solution, you
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are hoping that you will be able to adapt that solution to yours but it is very very rare

the case in which you can copy the code from a forum to your code.” Some developers

prefer to copy and paste when they already know what they are looking for, but if

they want to learn they prefer to follow the instructions step by step as indicated by

a participant in focus group 9: “If it is new information, I follow step by step. If I

already knew the solution, I go directly and take the code snippet. If it is something

general, I type it. I prefer to type it myself.”

In other cases, developers do not make any distinction between these two practices

as indicated by a participant in focus group 3: “Often it is easier to copy and paste

than to type it all over again. But I do not see a huge difference between copying and

typing it. Usually they are short. I have not looked for multiple methods that i want

to copy. It is usually very small, you know, an idiom that you need.”

6.5 Summary

In this chapter, we discussed how developers use the information they find on the

Web to solve software development problems. From our empirical studies we learned

that developers mainly read the information from the Web and use it to understand

it or to guide their coding. Copy and paste from the Web was not very common.

Choosing between copying and pasting source code and reading and typing it depends

on personal preferences of developers or also on the problem they want to solve and

the information they find on the Web. However, some developers did not see any

distinction between these two practices.

We also analyzed how efficient are Web searches in terms of their success to solve

software problems and their length in time. We found that developers are highly
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efficient to solve problems when they are trying to remember syntax details, learning

new concepts, or looking for information to evaluate open source projects. Web

searches are not very efficient to find information to clarify implementation details or

to fix bugs. Less than half of this type of searches helped developers to find a solution

to their problems. When developers did not find a useful solution on the Web, they

decided to implement a solution by themselves, postpone dealing with the problem,

or ask for advice to a co-worker. In few cases, developers look for an answer in a book

or send questions to mailing lists.
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Chapter 7

Implications and Discussion of

Research Methods Used

In this chapter, we present the implications of the results from our empirical studies

for tool designers, researchers, and developers. We end this chapter with a discussion

of the research methods we used in this dissertation.

7.1 Implications for Tools

Our empirical studies show that developers perform Web searches differently to look

for code snippets (opportunistic searches) and to look for open source projects (non-

opportunistic searches). In this section, we provide implications for tools for these

two types of searches separately.
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7.1.1 Implications for Tools for Opportunistic Searches

From our empirical studies, we have learned that developers are highly successful

when they do Web searches to find code snippets to remember syntax details or

to find facts. In this case, developers know exactly what they are looking for and

recognize it easily. However, developers are not highly successful when they search on

the Web for code snippets to clarify implementation details or fix errors, which is the

most common motivation for searching on the Web. We believe that improving tools

to help developers be more successful in this type of searches can make a positive

impact on the effectiveness of solving software problems. Based on our findings, we

give the following recommendations to tool designers.

Make Examples and Source Code Snippets more Visible

Developers are mainly looking for examples or code snippets on the Web. Even

when developers look for API Documentation or tutorials, they also want to see

examples of how to use certain functionality. However, Web browsers do not facilitate

the identification of examples or code snippets in the search results.

Due to the fact that we observed that developers often look for search results that

contain examples or code snippets, we believe that it would be helpful if developers

could know which search results contain examples or code snippets. One possibility

is to augment the search results gathered from a search engine such as Google and

analyze which ones have source code. Mica [59] and Assieme [20] are two tools that

recently have shown that augmenting Web search results to make developers aware

of which results contains source code examples of API can make Web searches more

effective. Also, after identifying that a result has source code, we believe that it would

be useful to show technical and social information related to a piece of source code.

Recently, a prototype that augments Web search results with reputation information
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has been developed [16].

Another possibility to make examples or code snippets more visible is to create

a crawler to gather source code snippets from tutorials, forums, API documentation

on the Web and create a repository of them. This repository could associate code

snippets with text surrounding them in Web pages so that code snippets would have

actual text associated with them to facilitate the matching between code snippets

and keywords in queries [61].

Show Error Related Information when an Exception Occurs

Nineteen percent of searches to clarify information were to fix errors. When

developers compile, run, or test their source code, they copy and paste the exception

in a Web search engine and they try to find what causes an error, how it can be

solved, and what are the experiences of other people with that same issue.

Due to the fact that we observed that developers look for error related information

when their program shows an error, we believe that it would be helpful for developers

if the IDE that throws an exception will also run a query on the Web with that

exception. In that way, the IDE can show the developers not only the line where the

exception was detected and the stacktrace, but also information found on the Web

related to this error including potential causes, potential solutions, and what other

people did when they encounter the same error.

Present Results from Web Searches in the Development Environment

We observed that sometimes after developers found a solution on the Web, they

put side by side a window with the source code found and a window with their source

code in an IDE. For this reason, we believe that it would be useful if developers could

have both, their source code and results from the Web in the same environment.
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Recent tools such as CodeGenie [30] and Blueprint [4] have explored this integration

between the IDE and the Web.

We expect that in the future developers will have online IDEs and the integration

of search results from the Web and their own code stored in the cloud would be easier

and more natural.

7.1.2 Implications for Tools for Non-Opportunistic Searches

In our empirical studies, we observed that developers look for the same type of in-

formation to compare open source projects. Based on this observation, we believe

that it would be helpful if developers would have a tool that gathers this information

and shows it in a comparative way. There are not many applications that have this

functionality. One of the few is Ohloh, which allows developers to enter the name of

three open source projects and shows the same information for all the three systems

in a table to facilitate comparison. We used Ohloh to compare three systems searched

by one of our participants, Oscar and Figure 7.1 shows the results of this comparison.

For each of the projects, Ohloh shows general information including how recently

the repository was updated, the home page, and license. It also includes repository

activity for the project, code analysis, and reputation of the project given by Ohloh

users.

We believe that tools that allow comparison of systems will be useful for develop-

ers. These tools should be flexible enough to support comparisons of more than three

open source projects. Currently, Ohloh supports only comparison of three open source

projects, as previously mentioned. However, we observed that a developer compared

10 open source systems and he was planning on evaluating more before selecting one.
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Figure 7.1: Compare Projects Feature by Ohloh
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Tools that help comparing projects should also include other criteria in addition to

repository activity. This recommendation is based on the fact that we observed that

developers evaluate open source projects having into account not only characteristics

of their repository but also other characteristics such as the installation requirements

and the architecture of the open source project.

7.2 Implications for Researchers

7.2.1 Extending Understanding of Source Code Search on

the Web

Previous work [5] found that developers mainly had three intentions to look for source

code on the Web: remember, clarify, and learn. We extended this work in two ways.

One, we used the proposed Web intention classification for our analysis and we found

the same three intentions, and also another that was not reported in that study. We

found that developers also look on the Web to find tools to support programming

activities or to find open source projects. Two, we focused on the judgments that

developers make while evaluating search candidates and on how the information found

on the Web is used. Brandt et al. found that developers use cosmetic features as a

relevance cue. However, we found that they not only use cosmetic features but also

they use other cues including the type of page (e.g. forums), source of page (e.g.

official API documentation), and social cues (e.g. what other people think about a

solution). We also provide details on the evaluation process followed by developers

for each type of search. In addition, we also provide quantitative information on

frequency of searches, effectiveness of searches, number of queries performed, number

of results visited, reasons to give up searches, and use of information. Our results are
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based on field studies of software developers in the workplace. Direct observations of

developers on the workplace has not been reported before in the literature to study

source code search behavior.

7.2.2 Searches for Code Snippets and Software Components

are Different

Based on our findings using both an opportunistic problem solving approach and a

naturalistic decision-making approach, we argue that looking for open source projects

and looking for code snippets need to be studied as two different problems. This

means that we recommend researchers to study these two types of searches separately

because they have different motivations, different evaluation strategies, and different

use of information found on the Web.

Using an opportunistic problem solving approach to understand the motivations of

developers to perform Web searches, we found that developers perform opportunistic

and non-opportunistic searches to solve software development problems. Opportunis-

tic searches are done to find source code snippets to remember syntax details, clarify

implementation details or fix bugs, and learn new concepts. On the other hand,

non-opportunistic searches are done to find information to evaluate open source can-

didates. This opportunistic approach helped us realize that searches for code snippets

and open source projects are two different problems.

In addition, using a naturalistic decision-making approach, we found that devel-

opers are using Recognition-Primed Decisions when they look for code snippets or

source code examples. However, they do not use this type of unconscious and rapid

decision-making when they look for open source projects or software tools. When

developers need to choose an open source system to integrate into their projects, they

151



need to do an exhaustive and comparative evaluation of candidates. The compari-

son needs to be thorough because the decision is non-trivial for the project and also

because developers need to justify why they chose a system over others. We also

found that developers use different relevance cues or criteria to evaluate open source

projects and snippets.

7.2.3 Applying Naturalistic Decision Making Theories

For our analysis of judgements made to evaluate search results, we turned to the

decision-making literature, which does consider performance in complex domains.

To our knowledge, our work is the first to use Naturalistic Decision Making Theory

and the Recognition-Primed Decision Model to understand code search on the Web.

We used the theory and model to bring a different perspective on judgments and

decision-making. We believe that these could also be used to better understand

decision-making when knowledge workers look for information on the Web. Also,

these theories could be applied to any high stakes setting with multiple actors where

decisions are made to solve ill-structured problems under time pressure and stress.

When applying this theory, we recommend researchers to carefully interpret the

explanations given by participants about their rapid judgments. When we ask peo-

ple to explain their thinking, we need to be careful in how we interpret their an-

swers. Sometimes we request an explanation when an explanation is not possible.

Researchers have found that often people know little about how they think and how

they solve problems [35]. In our case, our results related to the evaluation cues used

while reviewing search result candidates are based on a mix of observations and the

answers given by developers which minimizes the impact of imprecise explanations.
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7.3 Implications for Developers

Developers can also benefit from knowing that they are making unconscious and

rapid judgments when they evaluate search results. By knowing that developers

use first impressions when choosing candidates can help them realize what are the

first impressions they are using and why they could not even consider some good

candidates. It is possible to change our first impressions by changing the experience

associated with them. Also, by being aware of these unconscious decisions developers

can feel more comfortable answering “I do not know” when asked why they made

those decisions.

Our research findings show how the Web is changing the way developers program

and also raise questions about whether or not developers should be trained and hired

differently. We provide empirical evidence that shows that looking for source code

on the Web is a common activity for software developers and it is done more often

than what is reported by them. Also, we observed that developers rarely use books

or printed manuals to find solutions to their problems, or they less often memorize

syntax details of commands. Instead, developers are using the Web as a source of

information to find solutions and also as an external memory aid to remember syntax

details.

Regarding the training of developers, our findings raise the questions: should

developers be trained on the kinds of software problems that can be effectively solved

using the Web?, should they be trained to evaluate code snippets and open source

projects on the Web?, should they be trained to remix code snippets from the Web

and to integrate code found on the Web? Regarding the hiring process of developers,

currently this process often includes technical interviews where developers are asked

to code on a white board without using the Web as a source of information. Based

153



on our observations, we believe that it would be more realistic to ask developers to

solve a coding problem using the Web during a technical interview. In this way,

interviewers could assess developers’ skills on using the Web to program efficiently, a

technique that developers will use almost everyday at work.

7.4 Discussion of Research Methods Used

We conducted empirical studies using four research methods. Each of them provided

valuable data to understand the motivations that developers have to look for source

code on the Web, how developers evaluate search results, and how they use the infor-

mation they find on the Web. Each research method has strengths and weaknesses

but these methods complement to each other because the strengths of some cover the

weaknesses of others.

Online questionnaires were effective to gather personal opinions of a large number

of professional developers working in diverse domains. Data collected also helped us

quantify our findings from the literature review. For example, from the literature

review we learned that developers have six different motivations to look for source

code on the Web, but we did not know how frequent these motivations were. The

online questionnaire helped us answer this question. We were aware that using online

questionnaires involves collecting self-reporting data and that we had to trust that

developers were actually reporting what they do. In addition, it is possible that

participants misunderstood any of the questions or categories that we included in

the questionnaire. To mitigate this issue, we conducted pilot surveys to verify that

we were getting the information we were looking for. Another shortcoming of online

questionnaires is the potential presence of the non-response bias. It is possible that

the opinions of developers who decided to answer the questionnaire differ from the
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opinions of those who did not answer the questionnaire.

Focus groups were useful to gather conversations and opinions of software devel-

opers talking in groups about source code search on the Web. This empirical study

helped us collect anecdotes about Web searches and also discussions between partic-

ipants. Similar to online questionnaires, data collected using this research method

relies on self-reporting information, but in this case, we were able to interact with our

participants to ask follow-up questions or clarifications. Also, the opinions of devel-

opers were influenced by their partners and possibly by the presence of the researcher

running the focus groups.

Laboratory experiments were helpful to observe developers selecting and using

information from the Web to complete software development tasks. In this case,

the data collected does not rely on self-reported information but instead on direct

observation. Also, laboratory experiments allowed us to control the environment for

all participants, including the task assigned, the user interface, the number of results

shown, and the maximum time to complete a task. Controlling these variables was

useful to compare the behaviour of developers. Although laboratory experiments

allowed us to collect data for specific aspects of source code search on the Web such

as the evaluation of search results and the use of information from the Web, this

type of empirical study has some limitations. The environment in the laboratory

is different from the workplace where variables are not controlled, developers often

work in teams, and developers have multiple interruptions while working on tasks.

Also, we asked our participants in the laboratory experiments to think aloud while

completing the tasks and a researcher was observing behind the participant, which

might have affected the behaviour of developers.

Field studies were effective in gathering data from direct observations of develop-

ers in the workplace performing Web searches spontaneously to help them complete
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their development tasks. During observation, we paid particular attention to what

happened before and after the Web search which gave us the context of the task

and the search. This context was useful to understand the motivations behind Web

searches and how effective they were to help developers solve software development

problems. In the field studies, developers were in their own work space, interacting

with co-workers, and being interrupted for multiple reasons. We, researchers, sat

behind a developers for a day. It is possible that the behaviour of developers could

have been influenced by the fact that they were being observed. However, we tried

to mitigate this effect by explaining that our observations were for research purposes

and not to be reported to their managers in the company. We also interacted with our

participants by going for lunch with them so they will be more comfortable around

us. We also observed them from a place that was not very intrusive to them. We

sat behind them, not next to them. At the end of the observation day, we asked our

participants if we disturbed them during the day. All of them indicated that we did

not disturb their work and some of them mentioned that they even forgot they were

being observed at some point during the day. We also collected Web searches using

the browser plug-in when developers were not observed. As part of our future work,

we plan to compare the Web searches that developers performed when they were

observed and when they were not, to study the potential effect that the presence of

a researcher might have on the Web search behaviour of developers.

Gathering data using a combination of research methods allowed us to triangulate

the phenomenon of source code search on the Web. This triangulation strengths the

validity of our research findings and deepens our understanding of how, when, and

why developers look for source code on the Web. The benefit of combining multi-

ple research methods is that the shortcomings of some methods are covered by other

methods. Both online questionnaires and focus groups rely on self-reported data given

by developers about source code search on the Web. In contrast, laboratory experi-
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ments and field studies helped us collect data on developers actually performing Web

searches without depending on self-reported information from developers. Another

shortcoming of online questionnaires was the potential presence of non-response bias,

that is, that developers who answered the questionnaire might have different opinions

from the ones who did not answer the questionnaire. This shortcoming was covered

by field studies where most of observed developers were volunteered by their man-

agers. In addition, the limitation of laboratory experiments in allowing us to observe

developers in a simulated environment was covered by field studies where we observed

developers performing Web searches in their own working environment.
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Chapter 8

Conclusion and Future Work

In this chapter, we present the conclusions for this dissertation as well as the work

we would like to do in the future in the area of source code search on the Web.

8.1 Conclusion

The increased availability and quality of open source code on the Web is changing the

way software developers write source code. Developers are using the Web as a huge

source code repository to look for source code they could reuse to solve a software

development problem. It is important to understand how developers look for source

code on the Web so that tools and approaches can be suggested to better support

their needs.

We used a set of complementary empirical studies to understand the phenomenon

of looking for source code on the Web from different but interrelated perspectives.

We first performed a survey of the literature in order to have an overview of what

we know so far about source code search on the Web. Next, we used two comple-
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mentary approaches to study source code search on the Web. The first was to gather

developers opinions on this activity by collecting developers reflections via an online

questionnaire and team reflections via a focus group. The second approach was to

observe developers not only talking about code search but also actually performing

code search on the Web. For that purpose, we conducted field sites in companies

in the US and abroad, and also laboratory experiments to test specific hypothesis

where we needed to control some variables. We present the results of our analysis by

answering the research questions that were posed in the introduction.

What motivates developers to search the Web to find source code to com-

plete their software development tasks?

We analyzed Web searches using an opportunistic problem solving approach to

find out what motivates developers to look for information on the Web. We found that

developers mainly perform searches to opportunistically solve software development

problems (82% of Web searches). Opportunistic searches are ad hoc and are done to

remember syntax details, clarify implementation details or fix bugs, and learn new

concepts. The software problem that developers want to solve define the search target.

We found that developers mainly look for examples, code snippets, syntax, or API

documentation when they want to remember or find a fact. When developers want to

clarify implementation details or find a solution to a bug, they mainly look for API

documentation, examples, code snippets, and error related information. If developers

need to learn new concepts, they usually look for tutorials or documentation for APIs.

On the other hand, non-opportunistic searches (only 18% of Web searches) follow a

systematic process and are performed to find open source projects.

We also found that looking for source code on the Web is a common technique

used by developers to solve problems. We learned that developers perform searches

more often than what they report doing. In a survey, only 45% of developers re-
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ported performing Web searches daily, but in our field observations we found that

83% of developers performed at least one Web search during their work day and they

performed on average 3.6 searches per day.

What information and strategies do developers use to evaluate search re-

sults when they perform Web searches to find source code?

We learned that developers evaluate source code search results differently when

they are performing opportunistic searches and non-opportunistic searches. Develop-

ers use different information and strategies to evaluate results for these two types of

searches.

Using a naturalistic decision-making approach, we found that when developers

evaluate results for opportunistic searches they make quick and unconscious judg-

ments using Recognition-Primed Decisions. Developers first recognize the situation

by identifying the goal, relevance cues, expectations, and actions that matches with

a previous similar experience. When trying to remember detailed syntax, developers

often perform only one query and evaluate one result, but when clarifying implemen-

tation details or learning new concepts they perform multiple queries and evaluate

multiple results one after the other. Developers use two or three relevance cues in-

cluding the result order, the presence of examples or code snippets, and the Web host

domain. When they want to remember or clarify syntax details, developers evaluate

the results through actual coding or testing the source code in an IDE. When devel-

opers find information to learn new concepts, they often read the information and

understand it. They do not usually test it in an IDE.

On the other hand, when developers perform non-opportunistic searches to look

for open source projects, they often perform only one query and evaluate one result

to find information about a candidate system. After they collect information for sev-
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eral candidate systems, they compare the systems based on the system architecture,

installation requirements, cost, and the opinion of other people about the system. De-

velopers often mentally process the information they gather for each candidate they

find in a Web search session. Selecting an open source candidate requires multiple

Web search sessions.

What strategies do developers use to reuse/use source code found on the

Web?

From our empirical studies, we learned that developers use the information they

found on the Web differently for opportunistic and non-opportunistic searches. De-

velopers often use the information they found for opportunistic searches by reading

information from the Web and then understanding the information or using it as a

reference for coding. When developers perform non-opportunistic searches to find

open source projects, they mainly read and understand the information they found

for each candidate system. In few cases, they also download the software and try it.

Are source code searches on the Web efficient to complete software devel-

opment tasks?

We define efficiency of Web searches in terms of the success of a Web search to

help solve a software development problem and in terms of the time it takes to solve

a problem using a Web search. We found that developers were able to successfully

solve 63% of their opportunistic software problems in 4.9 minutes on average by using

the information they found on the Web. Problems were solved between 1 second and

38 minutes. We found that developers are highly efficient when they are trying to

remember syntax details or to learn new concepts. Web searches are not very efficient

to find information to clarify implementation details or to fix bugs. Less than half of

this type of search helped developers to find a solution to their problems. In these
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cases, developers often did not find anything useful on the Web or they found only a

starting point for a solution. After developers gave up on a Web search, they solved

the problem by coding a solution by themselves or asking for advice to a co-worker. In

other cases, developers decided to postpone dealing with the problem for the moment.

In the case of non-opportunistic searches, developers were very successful when

they looked on the Web to find information related to open source projects they

were evaluating. Developers successfully found the information they were looking for

for 88% of this type of searches and they did it in 11.5 minutes on average. From

our empirical studies, we have information on how successful developers were finding

information to evaluate open source candidates. However, we do not have information

on how successful developers were by actually using the open source project they

selected.

What are the implications of our results for tool designers, researchers,

and developers?

From our empirical studies, we have learned that developers are not highly suc-

cessful when they search on the Web for code snippets to clarify implementation

details or fix errors, which is the most common motivation for searching on the Web.

We believe that improving tools to help developers to be more successful in this

type of searches can have a positive impact on their effectiveness in solving software

problems. The following recommendations can help improve tools that support op-

portunistic problem solving. First, we suggest to make examples and source code

snippets more visible in search results by showing in the result list which results con-

tains code and presenting a summary of source code characteristics for each result.

Second, we recommend that IDEs should show error related information gathered

from the Web when an exception occurs. This could include information about the

reason of the error and what other people did to solve it. Third, we recommend
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to show Web search results in the same environment where developers are coding,

which could facilitate the integration of results and use of the programming context

to perform a Web search.

Our results also have implications for software engineering researchers. One,

our results extend the understanding of source code on the Web and also present a

model to characterize this phenomenon. Two, our results show empirical evidence

that looking for code snippets and looking for open source projects are two different

problems that should be studied separately. Three, we have applied the Naturalistic

Decision Making Theory and the Recognition-Primed Decision Model to understand

how developers evaluate search results. This theory and model bring a different

perspective on judgments and decision-making. We believe that this theory and model

could also be used to better understand decision-making when knowledge workers look

for information on the Web. Also, this theory and model could be applied to any high

stakes setting with multiple actors where decisions are made to solve ill-structured

problems under time pressure and stress.

Regarding the implications for developers, we believe that developers can also

benefit from knowing that they are making unconscious and rapid judgments when

they evaluate search results. By being aware of these unconscious decisions and

that they use first impressions when choosing candidates can help them to realize

what are the first impressions they are using and why they could not even consider

some good candidates. It is possible to change our first impressions by changing the

experience associated with them. In addition, our research findings show how the

Web is changing the way developers program and also raise questions about whether

or not developers should be trained and hired differently.
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8.2 Future Work

Although the results of this dissertation have extended the understanding of source

code search on the Web, there are still questions that could be explored in the data

we collected. Also, there are some studies that could be conducted to broaden our

understanding of source code search on the Web.

During our field studies, we collected data for the Web searches we observed, but

we also collected self-reported searches that developers performed for a period of three

weeks. These Web searches were collected in a paper format in Peru and using the

browser plug-in in the US. We collected around 300 searches only in Peru. This data

can help validate our observations on the goal of the search, motivation, duration

of the search, number of queries, results visited, and success. Analysis of this data

can also help showing if there is a difference between searches that we observed and

searches that were self-reported.

In this dissertation, we briefly explored few cultural differences among developers

in the US and Peru, such as the prevalence of collaborative searches in the US and the

fact that queries are written in English in Peru where the native language is Span-

ish. However, more cultural differences could be analyzed from our data including:

differences in motivations to perform searches, in queries performed, in evaluation of

results, use of information, and success of searches.

In both our focus groups and field studies, we observed that developers had a

preference for using question-answering Web sites, such as Stack Overflow, to find

source code snippets and find solutions to program errors. Stack Overflow is a Web

site where anyone can post questions and receive answers from the general community.

The original poster can select the best comment and “accept” it as the answer to the

question. There are currently over 2.5 million questions on the site. Good questions
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and comments can receive “up votes” and earn reputation for the author. There have

been some studies on Stack Overflow about how developers ask and answer questions

on the Web [64]. But it would be beneficial to conduct studies on Stack Overflow

to also understand how programmers use snippets in their conversations with each

other. Some questions include: what kinds of questions elicit a snippet as part of

the accepted answer?, how do code snippets function as a part of speech?, how are

they used to ask questions?, how are they used to answer questions? and do snippets

provoke new questions or requests for clarification or are they self-explanatory?

We found that developers are looking for code snippets for 82% of Web searches

and we suggested in our implications that it could be useful for developers to have a

code snippet repository. We envision this code snippet repository to help developers

make their opportunistic searches more efficient. We already have a prototype of

this kind of repository [61]. To build the repository, we crawled code snippet from

different Web pages, such as tutorials. We would like to also include code snippet from

Stack Overflow. For indexing code snippets, we used text around them in Web pages

and also properties of the code based on static analysis. We still need to run some

studies to determine which is the best way to rank code snippets. We currently show

the snippets accompanied by a summary of characteristics but also need to conduct

usability studies to improve the presentation of code snippets. We would also like

to conduct some comparative studies between our source code snippet search engine

and other code snippet Web pages such as Sniplr and Smipple.
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Appendices

A Glossary

This appendix defines the concepts we use in this dissertation.

Efficiency We define efficiency of Web searches in terms of the success of a Web

search to help solve a software development problem and in terms of the time it

takes to solve a problem using a Web search. We consider that a search is suc-

cessful when developers found what they were looking for and the information

found helped them to solve the problem that motivated the Web search. To

measure the time a Web search takes, we consider that the Web search started

when a developer entered a query in a Web browser or when a developer ac-

cessed a bookmark. We consider the search ended when a developer solved

the problem using the information found on the Web or gave up on finding

information on the Web to find a solution.

Search Session A Search Session represents a period of continuous Web usage to

fill a single information need in the same day.

Some definitions of sessions used by other researches indicate that Web usage

must be continuous with no breaks longer than 5 minutes [53], 6 minutes [5], or

25.5 minutes [6]. However, we decided not to include a cutoff in the longest time
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a break could take in the same day. Our decision was based on the fact that we

observed that developers had interruptions longer than 25.5 minutes while using

the Web and when they came back they continued reviewing information on the

Web or refining queries to fill the same information need. For that reason, the

only time constraint we consider is that Web usage should happen the same day.

Instead, we put more emphasis on the intention of the search. If Web usage was

done to meet the same information need, we consider all those intervals as part

of the same Search Session. The three longest breaks that we observed in our

field sites were of 3 hours 25 minutes 46 seconds, 1 hour 34 minutes 19 seconds,

and 1 hour 16 minutes and 18 seconds. In these cases, developers interrupted

their search to chat with co-workers, answer calls from customers, code, write

documentation, and have personal breaks. When they used the Web again,

they read the information they found before and in some cases they also copied

and pasted lines of source code and used them even though more than 3 hours

passed since their first query.

Problem Solving Sequences Often developers only need one Search Session to

solve their software problems or to decide to give up on finding information on

the Web to find a solution. This is mainly because developers only need to meet

an information need to solve a problem. However, in other cases, developers

need to meet more than one information need in order to solve their software

problem and for that reason they had to perform more than one Search Session.

We call Problem Solving Sequences to the set of Search Sessions done to solve

a single software problem.

Problem Solving Sequences were common when developers were looking for

Open Source Projects. Developers performed individual Search Sessions to find

information about individual system candidates. For example, the developer we

observed, who was looking for an open source project to do data mining of logs
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and to manage alerts, performed 10 separate Search Sessions to find information

of 10 different open source project candidates. The information need for each

search session was to find the architecture, installation requirements and other

information of a single system. Then, he compared the results from different

Search Sessions to evaluate the different systems and choose one open source

project to use.
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B Online Questionnaire
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