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Abstract 
Usability Testing is indispensable in the development of medical 

devices. It validates intended functionality, guaranties patient safety, 

and provides a technological advantage. In this thesis, the performance 

of the automated Dynamic AOI Mapping algorithm (aDAM) is 

evaluated on two small medical devices. Its functionality is tested to 

see if it is suitable for its use in the growing field of eHealth 

applications. The performance showed very promising results. In the 

area of tracking, with the correspondent adjustments, a correct gaze 

point mapping can be achieved up to 98% of the cases. For Screen 

Matching purposes, a highly accurate matching can be acquired if the 

device plays a main role in the analyzed video. In case the images are 

from very low-resolution, the algorithm does not function correctly. 

Nevertheless, this algorithm performs well, and it can be used for the 

analysis of small medical devices. 
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1 Introduction 

Usability is defined by the Organization for Standardization as “the 

extent to which a product can be used by specified users to achieve 

specified goals with effectiveness, efficiency and satisfaction in a 

specified context of use” [1]. 

In the development of medical applications, Usability is a key 

component of good practice and it has been identified as an essential 

criterion for its assessment. [2]-[6]. A correct and intuitive design of the 

application is of major importance, since people who need it may have 

problems due to their health conditions [2]. 

By conducting Usability Evaluations, intended functionality is 

validated and patient safety is guaranteed, since it improves 

productivity, enhances user well-being, increases accessibility, and 

reduces the risk of harm (Maramba et al., 2019) [7]. 

In recent years, an exponential increase in the number of eHealth 

applications has taken place. Nevertheless, only a small fraction of the 

usability evaluation results has been published [7]. Usability Testing 

should be part of every design and development process, but it is often 

looked over due to the time and labor demands of implementing the 

same (Khasnis et al., 2019) [8]. 

Most of the published usability evaluation results relied on Traditional 

Usability Testing methods. The most used being of quantitative nature 

like questionnaires or task completion.  Qualitative methods like think 

aloud protocol, focus groups and heuristic testing were also broadly 

used. The use of questionnaires does not necessarily pinpoint the 

problems that need to be addressed (Maramba et al., 2019). All these 

methods require specific input by the user and can have an evaluators 

bias making the process subjective and not transparent (Malan et 

al.,2018) [9]  

Eye Tracking Technology allows to quantify cognitive processes and 

therefore provides valuable insights into the user’s though processes 

during medical device usage. The collection and analysis of data do 

not require specific input by the user making it an objective procedure 

to evaluate the usability of a product (Mussgnug et al., 2017)[10]. 

The evaluation of video material is a time-consuming activity 

(Kurzhals et al., 2017) [11]. For this type of study, one has to go frame 
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by frame mapping the gaze point to an area of interest (AOI), which is 

considered tedious work.  Costs are extremely high compared to the 

output and the whole process is therefore rarely used (Essig et al., 2010) 

[12]. 

Several methods aiming to automate the gaze object mapping, and 

therefore automating the usability evaluation have been proposed. The 

motivation behind this was to make eye tracking studies more 

accessible and practical as a method for usability testing (Malan et 

al.,2018). The goal is to prevent designers from avoiding usability 

evaluation due to the problems mentioned above (Khasnis et al., 2019). 

In [9], a semi-automatic algorithm is proposed. In this algorithm, the 

evaluator has to define parameters (division of tasks, benchmark user 

to be followed) so that the program can analyze each subtask. Different 

measurements are compared, and the subtasks with largest deviation 

are displayed in the evaluators monitor for further inspection. 

The authors (Shun Chiba et al., 2018) [13] also explained an algorithm 

that recognized the activity of the user with the help of the gazed text 

and viewpoint Information. A fisheye camera was used for knowing 

the location of the user, and a mobile camera was used to identify the 

text with an optical character reader. The gathered information was 

then used to determine the activity and give assistance for the 

following steps. 

In the presented thesis, the automated Dynamic AOI Mapping 

algorithm (aDAM) (Batliner et al., 2020) [14] will be evaluated in small 

medical mobile devices. 

The advantage of this algorithm is that no static screen eye-tracking 

system needs to be used. It can track AOIs that change position over 

time (making them dynamic AOI’s (Batliner et al., 2020)) by following 

the borders of the screen. 

In addition, this algorithm can determine the content of the screen and 

is able to evaluate what part of the screen the user was looking at 

during device use. 
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Fig 1: (Left) Hamilton Ventilation system monitor and (right) Flowbox infusion device 

In [14], the performance of the algorithm was evaluated on two 

medical devices shown in Fig 1. The algorithm successfully mapped 

the gaze point in over 97% of the cases and it identified the correct 

screen content using feature point matching in over 98% of the cases 

(Batliner et al., 2020). 

 

 

 

 

 

 

 

Fig 2: (Left) MyLife Ypsopump and (right) Ypsomed Delivery Systems Smartpilot 

For this thesis, the performance of the algorithm was tested in smaller 

devices. These medical devices were the Ypsopump and the Smartpilot 

app for the Unopen syringe, both designed for the supply of insulin. 

The picture of each device is shown in Fig.2. 

The motivation for this study was to test how well the performance of 

the algorithm would be in devices of reduced dimensions. In case of 

malfunctions, a respective solution would be provided. The goal was 

to get similar results as the already analyzed devices. That would be of 

significant value, since the field where the algorithm can be used for 
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usability testing would be very wide. As mentioned before, eHealth 

application is a growing field, and therefore of big interest as well. 

In this work, the methodology, set up of the evaluations and an 

explanation of each program is provided. The results   are shown and 

discussed before making a conclusion on the findings. 
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2 Materials and Methods 
 

2.1 Devices 

Fig.2 showed the two devices that were analyzed during the 

evaluation. The mylife Ypsopump is a small insulin pump designed 

for medical self-treatment. Its dimensions are (7.8 x 4.6 x 1.6 cm) and it 

has an OLED touchscreen that is used as menu. 

The Ypsomed Delivery Systems Smartpilot is a complement for the 

variable dose pen for insulin UnoPen. It is used for a step by step 

patient guidance, tracks injections and provides log records 

information. It has a mobile application that runs in a Smartphone. 

Both devices represent small cases in the spectrum of medical devices. 

Its evaluation is important since it shows how robust the algorithm 

really is. It also gives insights into possible applications for usability 

testing in the field of eHealth applications. 

2.2 Setup 

The laptop used to run the aDAM algorithm was an HP Omen 17 

(2017) with a 2.5GHz Inter Core i5 processor. The code was run in an 

Anaconda Virtual Environment with python version 3.7.9. The main 

development tool was the OpenCV package (version 4.0.0) for 

computer vision tasks. 

In order to use aDAM, the eye-tracking recording that will be analyzed 

is needed. This recording has to be in avi format. Other requirements 

are the layout image of the device and an image of every possible 

screen, all of them being in png format. The most crucial document is 

the raw data originated from the eye-tracking studies. The extracted 

data has to be presented in a csv format, where the coordinates of the 

gaze points at different times are shown. In another column, the type 

of Eye Movement is stated, where it could be either Fixation or 

Saccade. 
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 Figure 3: Extracted scene video of the (left) Ypsopump and (right) Smartpilot 

Initially, all documents required for the evaluation of the Ypsopump 

were given. At a later point, the video and csv file for the Smartpilot 

were provided. The layout and screen images where then added. A 

frame of each video is shown in Fig. 3. 

As mentioned before, there are two different functionalities that 

characterize aDAM. These are the tracking of the device, and the screen 

matching of its content. For a more in-depth analysis, new recordings 

were made, each of them to explicitly test the different parts of the 

algorithm. 

Due to the pandemic, no actual experiment with eye tracking glasses 

was conducted. Instead, videos with the Samsung Galaxy s10e 

smartphone were recorded. For it to work, a dummy file was generated 

from the Ypsopump raw data. The entries had to be adjusted to the 

length of the video, and the gaze coordinates were fixed to a point that 

was on the device of interest. 

 

 

 

 

 

Figure 4: Extracted scene video of the (left) Ypsopump with tape and (right) 

Samsung Galaxy s5 with different screens. 

These new recordings were of small duration making them easy to 

analyze. They also showed simple cases to test the different 

functionalities of the algorithm. In the case of the Ypsopump, tape was 

placed around the sides of the screen to see if an improvement of the 

tracking was possible. Videos with different types of screen were 
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recorded on the Samsung Galaxy s5 smartphone to test the screen 

matching process. A frame of each video is shown in Fig.4. 

 

 

 

 

 

 

 

Figure 5: Half of the Ypsopump layout due to scale differences 

During the evaluation it was noticed that the scale of video and images 

of the device were bigger than the laptop screen Fig.5. For that reason, 

a resizing of the materials was needed. When resizing the video, it is 

also necessary to adjust the gaze points in the csv file accordingly. In 

some cases, it was possible to conduct the study without the resizing 

of the video. It was later noticed that the scale of the video had an 

influence in the results obtained. The reasons for that are later 

explained. The important point is that the evaluation for each device 

was conducted twice. Once in the original version (1920 x 1080) if 

possible, and the other in the reduced version (960 x 540). 

 

2.3 Algorithm 

In this section the algorithm and key functions will be explained. It will 

be showed how the algorithm works when it is correctly executed. For 

a more detailed review please refer to Batliner et al. (2020) paper [14]. 

An overview is provided in Fig.6. 
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Figure 6: Overview of the algorithmic flow (Batliner et al., 2020) 

2.3.1 Preparation 

Before the execution of the different programs, it is checked that all 

required documents exist. The Prep_win program is responsible for 

that. A predefined structure of the different folders is required, and the 

program is in charge of placing the different files in the correspondent 

folder. This program is also responsible for defining the coordinates of 

the screen and the device in the layout image. These coordinates have 

to be given in clockwise direction. An image is provided in Fig. 7. 

 

 

  

 

 

Figure 7: Screen (blue) and device (red) coordinates 
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2.3.2 Raw Data Synchronization 

Before using the raw data extracted from the eye-tracking glasses, it is 

necessary to synchronize the obtained data with the recorded video. 

The Raw_data_synchronization program is responsible for that. The 

reason behind this, is that the video that has been recorded has a frame 

rate of 30fps, while the eye-tracking glasses have a sampling rate of 

60Hz, resulting in more gaze points than frames in the video. The 

synchronization of both files results in a new csv file, where the 

different gaze points appear in the correspondent video frame. 

2.3.3 Detection and Tracking 

For the tracking part, the video and the synchronized file are needed. 

The Tracking program finds the coordinates of the device in each frame 

of the video. The mechanism used is the identification of its lines, 

which once identified, are used to calculate the intersections that 

represent the coordinates. 

As initial information, one has to provide the ratio between the height 

and width of the device screen. It must also be specified whether a 

neural network is used or not. The first time the program is used, there 

is no neural network. This is created in the last step of the algorithm, 

and it is used to fully automate the tracking for next similar videos. 

At the start of the program one can optionally choose the initial frame, 

which is sometimes necessary because the first frames could be black 

or not contain the device of interest. The first time the program is used, 

the process is semi-automatic.  

In the first frame, one always has to give the coordinates of the device. 

Once this is done, the algorithm starts working. A first approximation 

of the coordinates in the next frame is made using the Lucas-Kanade 

algorithm [15]. This algorithm identifies the change of light intensity in 

the pixels to give its first approximation. This first approximation is 

not always accurate, but it gives an indication of where the coordinates 

could be. The first two steps are shown in Fig.8. 
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Figure 8: (left) Initial guess of device coordinates (right) Approximation of 

coordinates in the next frame using the Lucas-Kanade Algorithm. 

The points of the first approximation are used to define a search area. 

An inner and outer tolerance are defined. A Canny edge detector 

(Canny (1987)) [16] is applied to the image. This detector identifies 

sharp discontinuities in a picture, giving as output the different curves 

in an image.  The curves that are outside the tolerances are deleted, and 

only the lines of the device should remain. This process is showed in 

Fig.9. 

 

 

 

 

 

 

 

 

 

Figure 9: Upper row: (left) identification of search area and (right) definition of inner 

and outer tolerances. Lower row: Canny filter before (left) and after (right) the 

tolerances are applied 

Once this is done, the smallest lines are filtered out, and the remaining 

lines are segmented twice. The first segmentation is given by the angle 

of inclination of the lines. The center of each line is calculated, and then 

a second segmentation with respect to the center points happen. The 

final result is four different groups of lines, each representing one side 

of the device. These steps can be seen in Fig 10. 
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(a) (b) 

 

 

 

 

 

Figure 10: (upper left) Segmentation by angle, (Upper right) Center of lines, (Low 

row) Segmentation by coordinates. 

The largest line of each group is selected and used to calculate the 

intersections. The intersections represent the coordinates of the device 

screen within the frame. It is checked that the found coordinates lie 

inside a ratio provided by the previous coordinates. If everything is in 

order, the found coordinates are used as input for repeating the process 

in the next frame. This continues until the end of the video. This is 

shown in Fig.11. 

 

 

 

 

 

Figure 11: (upper left) Biggest line detection, (Upper right) Calculation of 

Intersections, (Low row) Verification of acceptable intersecctions  
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In case of malfunction, the algorithm stops, and the user has to provide 

the coordinates for the next frame manually. In case a neural network 

is used, Mask R-CNN is responsible for the initial guess of the 

coordinates. 

At the end of the program, all the coordinates that were found are 

recorded and written to a csv file. 

2.3.4 Gaze Point Mapping  

With the last generated document, the next step is the extraction of the 

device screen content. This is done with the Mapping program. Using a 

transformation matrix, the detected screen and the gaze points are 

transformed to a frontal perspective, so that it can be displayed in the 

layout image. Only those frames where the gaze points are on the 

device screen will be saved for further process. In Fig. 12 the Mapping 

program can be seen. 

 

 

 

 

 

Figure 12 (left) Mapped screen content without gaze point and (right) with gaze 

point 

in order for the screen matching algorithm to be able to find the best 

match, when compare the detected screen with all possible device 

screens.  

 

2.3.5 Screen Matching 

During the screen matching step, the comparison of the gathered 

images is made. The idea is to compare the detected screen with all 

possible screen images and give as result the best match. The 

screen_matching_parallel program is run, where the software BRISK [17] 

is used. This software finds characteristic features in an image, which 

are usually either curves or corners. Those features are compared with 

the features of the other images, and the most similar result is returned 

and written in a new csv file. The comparison is seen in Fig. 13. 



13 
 

 

 

 

 

Figure 13   Characteristic feature 

detection and comparison 

2.3.6 Visualization 

After finishing the screen matching step, all the information that is 

required to illustrate the results in form of graphs and maps is at 

disposal. 

First of all, the create_aoi program is used by the evaluator to choose the 

different AOI of the device. The post-processing program can be used to 

generate heat maps, focus maps, an image with the amount of time 

spent in each AOI and the sequence of the different AOIs viewed 

during the ET video. The screen_post program generates one more 

sequence, which shows the order of the viewed screens during the 

analysis. The different outputs are shown in Fig 14-16. 

Figure 14: (left) Total amount of time spent in each AOI. (right) Location of the gaze 

points while watching the device. Results from Samsung Galaxy s5 analysis 
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Figure 15: (left) Heat map and (right) Focus Map for dummy file video for Samsung Galaxy s5 

 

Figure 16: From Samsung Galaxy s5 results: (left) Sequence of viewed AOI (Blue: Area A, 

Red: Area B). (right) Sequence of viewed screens (Top: C ,Middle :B, Low: A) 

 

2.3.7 Mask R-CNN 

Finally, one uses the Device program to train a neural network that will 

serve to make the process in similar videos fully automatic. This neural 

network is called Mask R-CNN. The device program has two functions, 

the first one is used to get a sample of coordinates to train the neural 

network, and the second function is the training of the neural network. 

The function of the neural network is to intervene whenever an error 

occurs and to give a first approximation of coordinates for the 

subsequent line identification. This is seen in Fig. 17. 
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Fig 17: Device (left) before and (right) after the use of the Mask R-CNN in order to 

give the first approximation. 

 

2.4 Evaluations 

For this work a total of 5 different videos were analyzed. Three videos 

were with the Ypsopump: The original video, and two short videos 

focusing in the tracking and in the screen matching part. The other two 

videos were in a Smartphone. The first one using the Smartpilot, and 

the other one just looking at different screens. This distinction was 

made to assess functionality in simpler case scenarios before analyzing 

the original one, which was more time consuming.  

All programs were run in all videos with the exception of the neural 

network creation. The most regular problems were noted during the 

evaluation and explained in the Results Section. Error rates regarding 

the tracking part for the different problems were made. Proposed 

solutions for each problem were given, and later discussed.  
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3 Results 
In this section, the most relevant findings during the analysis of the 

medical devices are shown. 

3.1 First Time Use Problems 

3.1.1 Required files 

As mentioned in Section 2.2, displaying the different images and 

videos was a problem due to its dimensions (Fig.5). Before the final 

solution, the code was changed to display the images and videos in a 

smaller format. The issue concerning that solution appeared during the 

training of the neural network, where the mask coordinates where 

proportionally smaller to the video. This can be seen in Fig.18. 

 

 

 

 

 

 

 

Figure 18: Error with Mask R-CNN 

Due to this problem, the scale of all images, videos and documents 

were changed in a pre-processing step. 

The first time the raw_data_synchronization program was executed for 

the Ypsopump, a problem due to the csv file happened. In the csv file, 

the gaze point information from multiple videos were included, and 

the algorithm was designed to only work with the gaze point 

information of the respective video. This caused a malfunction and to 

solve the problem a new csv file only with the information of one video 

was created. 
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3.1.2 Compilation Errors 

The aDAM algorithm was originally designed for a Mac operating 

system (OS). For the conducted studies a Windows OS was used. This 

difference is relevant since the first time the programs were executed, 

different compilation problems happened. These problems can only be 

related to the change in OSs since in previous evaluations no such 

problems occurred. Solutions were provided and the problems didn’t 

appear again during the evaluation. 

In the Tracking program, a variable wasn’t defined. In the Mapping 

program, an incorrect reading in the information provided by the csv 

file was made. While reading the coordinates of the gaze points, the 

title of each column was also taken into consideration, causing a 

malfunction since a string was tried to be read as an integer. 

It is important to mention not to run the Mapping program multiple 

times as it doesn’t overwrite the generated csv file, but adds new rows 

to it, causing a malfunction in the next steps. 

For the screen_matching _parallel program an error happened with the 

pool.map function. This function wasn’t able to recognize certain 

variables given as input. Although it couldn’t recognize some 

variables, it could recognize an array, so the solution was to add these 

variables as extra elements of that array. 

Finally, in the device program there was a bad delimitation of its 

different functionalities. This program has two functions. The first one 

is Create, in charge of collecting a sample of coordinates that will be 

used to train the neural network. The second function is Train with 

which the neural network starts training with the coordinates that are 

chosen. Those functions didn’t have the proper delimitation, causing 

malfunctions when they were run. After improving the code structure, 

that problem didn’t happen again. 

After these changes, the evaluation of each device could begin. The 

most important problems occurred during the execution of the tracking 

and the screen_matching_parallel programs. 
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3.2 Tracking 

3.2.1 Line Detection 

During video analysis, the use of the Canny detector filter wasn’t 

correctly applied at certain points. This incorrect behavior happened 

for different types of reasons. 

The worst case was during the analysis of the Ypsopump. As intended, 

the screen coordinates were selected for the analysis. The difficulty was 

that the screen sides were not clearly visible. The fact that screen and 

device had the same color contributed for that problem. If no lines are 

detected, the algorithm stops working and waits for manual input. 

This problem can be seen in Fig.19. 

Figure 19: (left) screen coordinates for Ypsopump evaluation and (right) 

detected lines after the Canny Filter was used 

Since it was intended to select the screen coordinates and not the 

device coordinates, a new video was generated. This was made to 

avoid occlusion as much as possible, and tape was used to show the 

different sides of the screen. The use of tape made the Canny detector 

work as intended. This can be seen in Fig. 20. 

 

 

 

 

Figure 20: (left) evaluation of Ypsopump with tape and (right) detected lines 

with Canny Detector Filter 

For the Analysis of the Samsung Galaxy s5 no problem was 

noticed, as its design clearly differentiates screen from device. This 

is seen in Fig. 21. 
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 Figure 21: (left) evaluation of Samsung Galaxy s5 and (right) detected lines 

with Canny Detector filter 

During the Smartpilot video analysis, a light source was 

responsible for the shadows on one side of the device. In those 

situations, the Canny Filter wasn’t able to detect the corresponding 

side. The only solution was to fast-forward the video to a point 

where that shadow didn’t exist. In the reduced format of the video 

that problem didn’t happen so often. The reason was that the 

shadow was interpreted as part of the line. This can be seen in 

Fig.22. 

 

 

 

Figure 22: (left) evaluation of Smartpilot app and (right) detected lines with 

Canny Detector filter 

3.2.2 Ratios & Tolerances 

For tracking the device, the ratio between height and width is given as 

input. In order to continue the analysis in the next frame, it is always 

checked that the ratio doesn’t deviate much from the given input. If the 

ratio is very different, the algorithm stops working and manual 

intervention is required. 

When the device is not seen from a frontal perspective, some sides can 

look bigger than others and therefore cause a malfunction. 

In the same way, when the segmentation by angle is made, it is always 

checked that the angle between the vertical and horizontal lines is at 

least form 70 degrees. If that is not the case, nothing is returned, and a 
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manual intervention is needed as well. This happened frequently in 

devices seen from non-frontal perspectives. 

The solution for this problem was to change the tolerances from these 

checkpoints. For the ratio, the tolerance was increased from 20% to 

50%. For the angle tolerance, the angle difference changed from 70 

degrees to 25 degrees. After these changes, these problems didn’t 

happen again. 

3.2.3 Occlusion 

One of the problems where no solution was found was during the 

occlusion of the device. The algorithm is robust enough to correctly 

detect the lines in the presence of small obstructions. This can be seen 

in Fig. 23.  

Figure 23: Correct line identification and segmentation in (left) Ysopump and 

in (right) Samsung Galaxy s5 with the presence of a finger 

The problem happens when the finger or the palm of the head 

completely covers one of the sides of the device. This can also happen 

when due to head movements, part of the device is left out of the 

image. When this situation happens, the line identification and 

segmentation is completely wrong. Either not all sides are detected, or 

some small lines that do not correspond to the side of the device are 

used and give a wrong intersection.  This can be seen in Fig.24. 
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Figure 24: Upper row: Complete occlusion of right side of the Ypsopump 

resulting in a wrong segmentation. Lower row: Complete occlusion of bottom 

side of the Smartpilot App, causing a (left) wrong segmentation and (right) 

wrong intersection. 

When this type of error happened, the only solution was to fast-

forward the video until all four sides were clearly visible again. 

 

3.2.4 Verification Bug  

During the analysis of the Smartpilot a problem in the is_ok_location 

checkpoint happened. This checkpoint verified that the founded 

coordinates were in a certain distance with respect to the old ones. 

An error message appeared in the console, although the coordinates 

where inside the ratio, which caused the algorithm to stop, and made 

the process manual. This can be seen in Fig. 25. 

Figure 25: (Left) Is ok_ocation error message in the console and (middle, right) 

the respective verifications that showed that the points were inside the 

tolerance (white circle). 

It was later discovered that the problem didn’t lie in the tolerance of 

the ratio. The problem lied in the sorting of the points, that swapped 

the positions of the bottom coordinates, and making them seem as the 

had a huge movement. 

For that discovery, the checkpoint was briefly removed, and it was 

seen that in later frames the search area was in form of an hourglass, 
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preventing the program of finding the vertical lines and thus stopping 

the algorithm again. This can be seen in Fig.26. 

 

 

 

 

Figure 26: (Upper row) Search area identification after ignoring the 

is_ok_location checkpoint. (Lower row) Line detection with Canny filter with 

the respective search area. 

The code structure of the sorting mechanism was changed, and the 

problem didn’t happen again. 

 

3.2.5 Segmentation by coordinates 

The most frequent problem occurred with the second segmentation.  In 

the segmentation by coordinates, the center points of the vertical and 

horizontal lines are used as input to calculate two different groups. 

Respectively left and right, and then top and bottom line. The 

clustering algorithm used for this task is the K-Means method [18]. 

When using the K-Means method there are two valid outcomes. The 

first outcome is the correct segmentation that gives the different lines. 

The second outcome is the incorrect segmentation, where in one side 

of the device, two different groups of lines are detected. This type of 

problem tends to happen independently of occlusions as seen in Fig. 

27. 
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Figure 27: (Upper row) Identification of center points in Ypsopump and the 

correspondent incorrect segmentation by coordinates. (Lower row) Incorrect 

segmentation by coordinates with finger (left), and without finger (right). 

Although this problem happens frequently, the error message doesn’t 

appear so often, since in many occasions the chosen lines for each 

group are in opposite sides. 

This was a very important problem for the Ypsopump since it made 

the process almost manual. It was noticed that the reduction of the 

video dimensions improved the tracking of the device, and it was 

enough for a correct execution of the Smartpilot video. 

Unfortunately, that wasn’t enough for the Ypsopump. At the 

beginning, different types of clustering algorithms were implemented 

to see if an improvement was reached [19]-[27]. As seen in Table 1, each 

algorithm was tested in the first 25 frames of the Ypsopump. The 

algorithms without number weren’t suited for clustering, as 

malfunctions occurred during the whole process. Although there are 

some algorithms that reported only 5 interventions, most of the times 

the segmentation was still incorrect. Better results were only achieved 

since the biggest lines were in opposite sides. The most promising 

algorithm was Mean-Shift. This algorithm did not only show better 

results, but the segmentation was correctly done. Unfortunately, it was 

later seen that its implementation in the other devices showed worse 

results than the K-Means, and therefore wasn’t included. 
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 Interventions 

K-Means 8 

BIRCH 4 

Affinity Propagation - 

Agglomerative Clustering 5 

DBSCAN - 

MiniBatch K-Means 5 

Mean Shift 3 

OPTICS - 

Spectral Clustering - 

Gaussian Mixture 
Model 

5 

Table 1: Number of interventions due to bad segmentation in the first 25 frames 

for the Ypsopump evaluation 

 To solve the problem, fewer center points were required for a better 

segmentation. To achieve this, a filtering of bigger lines was made. In 

previous evaluations, lines whose length was up to 6% of the total 

length were erased. Thanks to the tape, a bigger filtering could be 

achieved, and it was set up to 30% of the total length.  

It is important to mention, that in other devices this may have not 

worked out properly, since bigger filtering could erase important 

information, like the lines on one side. It is important to choose the 

correct filtering for each device. After the filtering, the tracking 

program worked correctly. 

After considering all required changes for a correct tracking, the 

evaluations were made. In the following Tables, the best results 

achieved for each video are shown. The different errors, its amount and 

total error rate are shown. A feature of the algorithm is that if an error 

is constantly repeated, the video is fast-forwarded until the moment 

when the two previous images have no gaze points. That’s the reason 

why in some videos the amount of analyzed frames is different. 
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 Smartpilot 
(1920 x 1080) 

Smartpilot 
(960 x 540) 

Total number of frames 1452 

Total amount of 
analyzed frames 

457 1452 

Line Detection 7 2 

Occlusion 3 10 

Height and width Ratio 0 3 

Incorrect second 
segmentation 

5 11 

Out of allowed zone 2 0 

Total Error Rate 3.71% 1.79% 

Table 2: Total amount of analyzed frames, amount of errors and error rate for 
the evaluation of the Smartpilot in original and reduced size. 

 
 

 Samsung 
galaxy s5 

(1920 x 1080) 

Samsung 
galaxy s5 

(960 x 540) 
Total number of frames 437 

Total amount of 
analyzed frames 

374 437 

Line Detection 2 0 

Occlusion 1 3 

Height and width Ratio 0 0 

Incorrect second 
segmentation 

26 7 

Out of allowed zone 3 5 

Total Error Rate 8.28% 3.43% 

 

Table 3: Total amount of analyzed frames, amount of errors and total error 
rate for the evaluation of the Samsung Galaxy s5 in original and reduced size. 
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 Ypsopump 
Tracking 

(960 x 540) 

Ypsopump 
Screen 

Matching 
(960 x 540) 

Total number of frames 533 387 

Total amount of 
analyzed frames 

533 320 

Line Detection 0 0 

Occlusion 6 9 

Height and width Ratio 0 0 

Incorrect second 
segmentation 

26 33 

Out of allowed zone 0 0 

Total Error Rate 6% 13.125% 

 

Table 4: Total amount of analyzed frames, amount of errors and total error 
rate for the evaluation of the Ypsopump with tape in reduced size version for 
Tracking and for Screen Matching 

 

3.3 Screen Matching 

For the Screen Matching part, a very important malfunction occurred 

with low- resolution images. During the execution of this program, a 

distinction between the different analyzed videos had to be made. 

Results varied a lot depending on the resolution of the extracted 

images and they had to be properly addressed. 

3.3.1 High-Resolution Images 

The videos recorded to test simple cases, showed very high-quality 

images since the device was always centered and conformed an 

important part of the video. High-resolution images resulted in highly 

accurate matches. 

In the case of the Samsung Galaxy s5, better results were obtained in 

the reduced size video. The main difference was noticed during the 

transition between images, where the original version had more 

mismatches than the reduced version. The comparison is seen in 

Fig.28. 
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Fig 28: (left) screen sequence from original video (right) screen sequence from 

reduced size video.  

 

3.3.2 Low Resolution Images 

For the Smartpilot, the device conformed only a small part of the video. 

The device was in a secondary plane and was seen in a non-frontal 

perspective. The ratio of device size to video size plays a very 

important role and can result in either very high- or low-resolution 

images. In the case of the Smartpilot, low resolution images were 

obtained, which lead to a malfunction. 

To understand this malfunction, one has to understand how the 

process of comparing images works. 

The BRISK software [17] detects characteristic features in those images 

that are analyzed. These can be corners or curves, and the results are 

stored in an array called “Descriptor”. When comparing images, their 

“Descriptors” are compared, and from that comparison the similarities 

are extracted. The result with the most matches is returned as the 

solution. 

However, the quality of certain images was so low, that the software 

was not able to find sufficient features to add to the Descriptor.  During 

the analysis of the Smartpilot it was discovered that in 8 of the 376 

extracted images that was the case. This can be seen in Fig. 29. When 

this happened, the descriptor was not an empty array, but was 

classified as a NoneType variable, which led to the malfunction. 

This problem was easily solved by changing the structure of the code. 
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Fig 29: Low resolution images classified as NoneType. 

 

The resolution of the images was very low, and therefore the Screen 

Matching was incorrect. In Fig. 30 it is seen the correct sequence of 

screens that should be obtained with the obtained sequence. 

Fig 30: (left) Correct screen sequence of Smartpilot video. (right) Screen 

sequence given as output for the Smartpilot video. 

 

This posed a serious problem for the purpose of the algorithm. The 

only solution that was found was the substitution of the screen folder 

images with one equivalent coming from the extracted images about 

to be analyzed. 

After this change, the screen matching was perfect, but using the 

resource of manually changing the images in the folder goes against 

the idea of an automated process. 
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4 Discussion 

4.1 Video scale adjustment 

During the different evaluations it was explained that the analyzed 

video had to be reduced in size due to display reasons. In the Results 

section it was seen that the small video format achieved better results. 

A first factor was that in the reduced version, small shadows were not 

a problem while applying the Canny filter and thus being able to 

identify the lines properly. That is something that played a huge roll 

while analyzing the Smartpilot video, preventing it from fast-

forwarding to the end. Another reason was that in the small version of 

the video, less lines were found, which meant less center point and 

therefore a better segmentation by coordinates. This is the reason why 

the tracking of the device had less error messages. 

A downside of making the video smaller would be the compression o 

the extracted images, which could lead to worse screen-matchings. Of 

course, if the device is centered in the video, the screen matching part 

is even better than the original, since less feature points are considered, 

and outliers are from less influence. 

4.2 Tracking 

There were different kind of problems during the Tracking part of the 

algorithm, but the results showed that the error rate was very small 

and therefore suited for the tracking of the small medical devices. 

It has to be considered that for properly execution, some adjustments 

have to be made, either by the reduction in the dimensions of the video, 

the use of tape around the sides for better line identification, the change 

in tolerances or the length of the filtered lines. There are many 

parameters with which the results can be improved. The only 

downsize is that the filtering of lines is a trial and error measurement, 

which could consume useful time. 

4.3 Screen Matching 

As mentioned in the Results section, with high resolution extracted 

images, a highly accurate screen matching can be obtained. This will 

always be the case when the device plays an active role in the analyzed 

video. If the device is in a second plane, if it is only seen in a small 

fraction of the size video, low-resolution images will be obtained, and 

an incorrect screen matching will be made.  
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The founded solution was to manually intervene in the folder 

organization and provide extracted images as screen images for a 

better matching. Although after the interference the matching is highly 

accurate, the intervention diminishes the purpose of an automated 

usability algorithm. Instead of the founded solution, an improvement 

on the screen matching program could be made, so that this kind of 

problem doesn’t tend to happen. 

4.4 Further steps 

This algorithm has a lot of potential and is suitable for small medical 

devices in normal circumstances. The robustness in the algorithm 

could increase in case an alternative method for the ratio inspection is 

find. In that way, in case of occlusion the visualized part of the device 

would be sufficient.  

Another initiative would be an improvement of the screen-matching 

program, so that low -resolution images could be better matched, or 

that at least similar screens can still be differentiated. 

The different maps, charts, and sequences that the algorithm gives as 

output can be used for usability evaluation. On the other hand, graph 

sequences are barely used and get more complex the more screens 

there are, or the larger the video gets. What could be done is use the 

output from the aDAM algorithm as input for another algorithm for a 

better understanding of the results. 

5 Conclusion 
In this thesis the performance of the automated Dynamic AOI 

Mapping algorithm (aDAM) was evaluated in two different medical 

devices. A total of 6 different videos were evaluated. These medical 

devices were from small dimensions, and the functionality of the 

algorithm was tested. The motivation was the growing field in eHealth 

applications, were the algorithm could potentially be used for usability 

testing reasons. The results showed that with the proper adjustments 

a very accurate tracking of the device can be made. Results showed an 

accuracy up to 98%. For simple cases where the device plays an active 

roll in the analyzed video, the screen matching can be very accurate. 

Videos were the device are left in a second plane do not perform well 

during the screen matching, since low-resolution images are extracted. 

Only with a manual intervention high results can be obtained as well, 

but that goes against the idea of an automated process. The algorithm 

performs well in both devices, but for it to work properly, some 
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adjustments like video dimensions, the use of tape in the sides or line 

filtering are very useful. Further improvements can be made in the 

algorithm for more robustness in the areas of screen matching or 

clustering.  With all things taken into consideration, this is an approach 

that can play a very important role for eye tracking usability testing. 
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