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摘 要

秘鲁位于南美洲的西部边缘，处于纳斯卡板块与南美洲板块的交汇处，地壳运动的

能量在这里产生了积累，最终导致了南美洲的地震运动与位移。

对于板块运动和变形而引起的位移，可以使用 GNSS技术进行直接测量，这是了解

这些运动学原理的基本手段。使用卫星大地测量技术，通过分析来自秘鲁国家地理研究

所 (IGN) 的秘鲁大地连续监测网络 (REGPMOC) 连续跟踪站的 GNSS 数据，可以得

到主要由纳斯卡板块和南美洲板块相互作用而产生的秘鲁边缘位移率。

世界协调时 2019年 5月 26日 7时 41分 14秒（当地时间 2时 41分 14秒），位于

利马东北部约 720公里处的秘鲁东部地区发生里氏 8.0级地震。这次地震是由于纳斯卡

板块的中深度正断层破裂造成的。震源位于南纬 5.796°，西经 75.298°，震源深度 109.9

公里 (USGS, 2019)。美国地质调查局 (USGS) 提供的震源机制解表明，破裂发生于一

个南北向的中度倾斜正断层上。秘鲁位于纳斯卡板块的俯冲带内，板块在该地区以每年

约 7厘米（约 2.7英寸/年）的速度相对于南美板块向东俯冲。中等深度的俯冲事件在秘

鲁北部和南美洲西部较为常见。与类似震级的浅源地震相比，它们通常对震源上方地表

造成的破坏较小，但在距离震中较远的地区仍可有较大震感 (USGS, 2019)。本次地震在

秘鲁、厄瓜多尔、哥伦比亚、委内瑞拉和巴西多地产生震感。

本文的研究区域包括秘鲁的丛林区域（主要是发生 8级地震的区域）。为比较每个

GNSS站在地震前后的位置，本文使用了 14个环绕震中的 GNSS站，分析分离距离（基

线）并得出位移矢量（震级和方向）。本文采用地震前一周和后一周的 GNSS数据（已

知地震日为 146儒略日），即 139儒略日到 156儒略日。使用 GNSS 处理软件 PANDA

（由中国武汉大学开发的用于 GNSS 数据分析的精密软件包）来获取实验结果。结果

显示，在毫米级精度上，地震附近的 GNSS测站向西北方向发生了大约 2 厘米的位移。

关键词：GNSS，PANDA，ITRF，精密单点定位，最小二乘法
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Abstract

Peru is located along the western margin of South America, between the convergence of

the Nazca and South American tectonic plates, where efforts and energy accumulation are

generated. The consequence of which are seismic movements and displacements on the South

American continent.

The use of GNSS technology provides direct measurements of the displacements due to

the movement of the plates and the deformation, basic information for the understanding of

the kinematics of the movements. Using satellite geodesy techniques, Peruvian margin

displacement rates produced mainly by the interaction between the Nazca and South

American plates have been derived by analysis of GNSS data from the GNSS Permanent

Tracking Stations of the Peruvian Geodetic Continuous Monitoring Network (REGPMOC) of

the Geographic Institute National (IGN) of Peru.

On Sunday May 26, 2019, at 7:41:14 UTC (2:41:14 local time), a magnitude (Mw) 8.0

earthquake took place in Eastern Perú approximately 720 km northeast of Lima. The

earthquake occurred as the result of an intermediate-depth normal faulting rupture of the

Nazca plate. The hypocenter of the earthquake was located at 5.796°S 75.298°W at a depth of

109.9 km (USGS, 2019). Focal mechanism solutions provided by the U.S. Geological Survey

(USGS) indicate that the rupture occurred on either a north- or south-striking, moderately

dipping normal fault. Perú is located within the subduction zone of the Nazca plate which

subducts in an eastern downward motion relative to the South America plate in this region at a

velocity of approximately 7 cm/yr (about 2.7 inch/yr). Intermediate-depth subduction events

are relatively common in northern Perú and western South America. They typically cause less

damage on the ground surface above their foci than similar magnitude shallow-focus

earthquakes, but large intermediate-depth earthquakes may be felt at great distance from their

epicenters (USGS, 2019). The earthquake was felt by people in Perú, Ecuador, Colombia,

Venezuela and Brazil.
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The study area includes the Peruvian jungle area, mainly the area where the 8-magnitude

earthquake occurred. The same GNSS stations have been used for the purpose of making

comparisons of the position of each GNSS station before and after the earthquake, in this

research used 14 GNSS stations rounding earthquake epicenter, analyzing separation

distances (baselines) and obtaining the displacement vectors (magnitude and direction). In this

thesis used data GNSS one week before and one week after earthquake, since 139 Julian day

to 156 Julian day, knowing earthquake day was in 146 Julian day, data was made quality

check and it result good data, according the standard solutions and the made post processing

and analysis. Results obtained using the scientific GNSS processing software PANDA, a

precision package for GNSS data analysis, developed by the University of Wuhan, China, are

shown. The results are high accuracy on millimeters order results obtained are surrounding

2cm displacement on near GNSS stations earthquake, to the north west.

Key words: GNSS, PANDA, ITRF, Precise Point Positioning, Least Squares method
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1 Introduction

1.1 Background

Nowadays GNSS systems allow us to observe the behavior of our planet, in different

areas of the application of geospatial sciences. GNSS information can be used for a better

understanding of the behavior of our planet. For the particular case, to study the behavior of

surface displacements, it is necessary to use high precision measuring instruments. GNSS

receivers allow measuring the position and speed of a point on the earth's surface. For

example, an investigation was conducted on the CORS Reference Displacement Monitoring

Stations using GNSS precise point positioning in Peru showing use of the GNSS technology

allows for achieving high accuracy displacements [1], as well as research was carried out on

the analysis of the geodesic network displacement where it is shown the statistical

significance of point displacements in the geodetic network as the intermediate stage between

the adjustment of respective epochs measurements and an in-depth deformation analysis [2].

For to do this type of research is necessarily know that basics concepts of reference system [3]

and reference frame [4], also GNSS can give us information for study crustal deformation and

know GPS velocity field, this uses the velocity field to update geodetic estimates of slip rates

of the major structures in the region, compare those for the major Tibetan strike-slip faults

against available geological estimates, critically assess any apparent discrepancies, and

conclude that there is a good correspondence between geological and geodetic slip rates [5].

About the topics referred before there are many information for have a reference and develop

my thesis tentative, in order to obtain results in my research thesis is necessary to use highly

robust software that is available to process this information, such as PANDA software,

GAMIT or BERESE [6]. Throughout the world there are more than 500 permanent GNSS

stations, forming a GNSS network, which defines the systems and world reference frames. As

in the world there are global GNSS receivers in Peru there are local GNSS receivers. At

present there are 70 GNSS receivers in continuous operation, operating 24 hours a day, all

year round; These make up a GNSS network that serves to monitor the Peruvian territory. For

this work, the processing and analysis of behavior and displacement will be carried out using
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high precision processing with data one week before and after of seismic, using the PANDA

scientific software, I will use PANDA software in research as a most essential scientific tools

and the quality control [7] of your result will be evaluated using the statistics of the final data

as well as compared to results from other reference software.

Peru has 70 GNSS receivers installed along its territory, these track precise positioning

data 24 hours per day and 365 days a year.

Figure 1 Location of seismic and GNSS stations

1.2 Research Status

This research was made thanks to National Geographic Institute from Peru, that made

possibly get data and information for make easy way this research.

Process GNSS data is important because allow us to knows high accuracy position of

GNSS stations, it can show the position and behavior of one point in the earth, and know what

is the displacement a long of time.

For this research it used data before and after earthquake for know how many was

displacement in 14 GNSS stations points surrounding earthquake, using PANDA software,

PANDA used only RINEX data version 2.11 with GPS constellations, and used metadata from
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IGS like broadcast, precise ephemeris and clock data.

GPS satellite transmit two frequencies from orbit those are pseudocode and carrier

phase observations [8]. GNSS satellite travel on a specific orbit. GNSS technology are

significantly of great importance for geodesy and geodynamics. More station will be

established and low-Earth-orbiting (LEO) satellites [9] will be connected to GNSS receiver.

However, in over the world the number of satellites for example GLONASS system from

Russia, Galileo system from Europe and BeiDou from China is going to provide a better

precise information to user [10]. International GNSS service (IGS) has provide a better

strategy for precise orbit determination (POD) [11]. Precise Point Positioning (PPP) is a high

standard geodetic positioning method has provided the sub-decimeter to decimeter level

precise positioning accuracy in static and kinematic modes [12]. PPP uses specific GPS

satellites in orbit and satellite clock products with un-differenced dual- frequency

pseudorange and carrier phase monitoring [13]. Although the sampling interval of 30 s served

almost as a standard format to collect GPS data at permanent stations for deformation

measurement [14]. GPS seismology uses GPS as displacement seismometers/instruments at a

high sampling rate for earthquake study [15]. first successfully detected the high-rate GPS

waveforms of displacements caused by the 3 November 2002 Mw7.9 Denali Fault earthquake

by using relative GPS positioning techniques to process the 1-Hz GPS data [16].

1.3 Dissertation´s Structure

This thesis divided into six main parts, detailed as follows:

- Part one: Introduction

In this part, we presented an overview of the topic of the study, the most important

problems, and the importance of monitoring land in earthquake to achieve understand in the

study area, motivations, objectives and contents.

- Part two: Literature Review

In this part, we presented the most important concepts in the field of study, the

methods used, previous studies and their effectiveness.
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- Part three: Methodology and Data Used

In this part, we provided an overview of our study area, the software and data used,

and we described the techniques and the methods followed to know the behavior of

earthquake, extract raw data convert to rinex and process in PANDA software and analysis the

results and changes in earthquake.

- Part four: Applications and Experimental Results

In this part we presented the different steps of the GNSS data preprocessing and the

analysis process, as well as the results of the quality check, and application in geodesy and

earth sciences.

- Part five: Analysis and Results

In this part we presented the results after processing and quality check, comparison

before and after earthquake, displacements, statists. Also, we analyzed and discussed these

results, and compared the developments in our study area.

- Part six: Conclusion

In this part we presented the general conclusion of our study which is based on a

comprehensive review of the partial and total result.



BUAAAcademic Dissertation for Master’s Degree

5

2 Basic Theory

2.1 Conventional Terrestrial Reference System and Frame

2.1.1 System Definition

Fixed coordinate axes will be used on the Earth, that is, they rotate with it, so that the

coordinates of a point, in principle, will always be the same.

The conventions that take the reference system to conventional are:

• Origin: Center of land masses or geocenter, including the atmosphere and oceans.

• Meridian plane: passes through any point on earth and contains the axis of rotation.

• Equator plane: it is perpendicular to the axis of rotation and stops at the geocenter.

• X axis: it is located in the direction of the meridian plane that passes through

Greenwich and contained in the equator plane. It is considered internationally as the origin

meridian or zero meridian since 1884.

• Y axis: contained in the equator plane and perpendicular to the X axis and its direction

will be such that the three axes form a right-handed triplet.

2.1.2 Coordinate system

2.1.2.1 Cartesian and spherical coordinates

Any point on the earth's surface will present coordinates (X, Y, Z) in the defined

coordinate axis triplet, these points being the ones that constitute the reference frame, figure 2

Figure 2 Cartesian coordinate system [4]
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In any case, it is common to use spherical coordinates for the parameterization of the

points on the Earth, (r, φ, λ), figure 3, where, in a generic way, r is the radial distance to the

geocenter, φ the geocentric latitude (angle between r and the plane of the equator) and λ the

geocentric longitude (angle between the Meridian plane of Greenwich and that of the

calculation point, measured in the plane of the equator).

Figure 3 Spherical coordinate system [4]

The relationship between spherical and Cartesian coordinates is a matrix product

corresponding to the regular parametrization of the sphere:






































sin
cossin
coscos

r
Z
Y
X

(2.0)

For the correct definition of the radial distance r (different distance for each point on

the Earth and that does not follow any exact geometric pattern), a reference surface must be

entered as an approximation to the real shape of the Earth.

2.1.2.2 Geographic coordinate system

In first approximation the Earth is a homogeneous sphere of radius R.

The axis of rotation cuts the earth's surface at two points: the North geographic pole

(PN) and at the South geographic pole (PS). The North geographic pole is the one from which

if the Earth is observed towards its interior, it is rotated in the opposite direction to the needles

of the clock, figure 4.
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Figure 4 Spherical approach to the Earth [4]

The vertical of any point on the Earth's surface will pass through the center of the

Earth.

The position of a point E on the Earth's surface is determined by two coordinates,

figure 5.

The geographical latitude (φ) from point E is called the angle that the vertical of E

makes with the plane of the Earth's equator. Geographic latitude varies from 0º to 90º in the

boreal hemisphere (northern latitude) and from 0º to -90º in the southern hemisphere

(southern latitude).

The geographic longitude (λ) of point E is called the angle that the meridian of the

point forms with the origin meridian. Geographic longitude varies from 0º to 180º in the

eastern hemisphere and from 0º to -180º in the western hemisphere, that is, the first to the east

and the second to the west.
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Figure 5 Geographical coordinates [4]

2.1.2.3 Geodetic and geocentric coordinate system. Geodetic reference system

The second approximation to the shape of the Earth is an ellipsoid of revolution

defined by its semi-major axis (a) and its semi-minor axis (b) or flattening (f). The center of

the ellipsoid coincides with the center of the reference system, that is, with the geocenter and

the semi-minor axis is made to coincide with the Earth's axis of rotation, thus constituting the

geodetic coordinate system.

The geodesic vertical at a point on the surface of the ellipsoid of revolution coincides

with the direction of the vector normal to the ellipsoid at that point, and therefore does not

pass through the center of the ellipsoid, figure 6.

So, the geodetic coordinates will be:

Geodetic latitude: it is the angle formed by the geodetic vertical of the point with the

geodesic equator plane.

Geodetic longitude: it is the angle formed by the geodetic meridian of the calculation

point and the origin geodetic meridian.

We introduce at this moment the geocentric coordinates since, on the ellipsoid they

will not coincide with the geodesics, in this case the geocentric longitude will be equal to the

geodesic, but the geocentric latitude (β) will be the angle between the line that joins the center

of the ellipsoid and a point on the ellipsoid and the geodesic equator.
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Figure 6 Geodetic and geocentric coordinates [4]

2.1.3 Geodesic reference system

2.1.3.1 Global geodetic reference systems. GRS andWGS84

Datum will be defined as the set of parameters that define the position of an ellipsoid

with respect to the earth. To determine it, it is necessary to know the geometry of the ellipsoid

a and f, its position with respect to the geocenter ΔX, ΔY, ΔZ (coordinates of the center of the

ellipsoid with respect to the geocenter), its orientation R1, R2, R3 (orientation of the ellipsoid

axes with respect to the terrestrial ones) and the k scale.

If ΔX = ΔY = ΔZ = 0, the Geodetic datum is called Global or absolute.

The Geodetic Reference System 1980 (GRS80) adopted by the IUGG (International

Union of Geodesy and Geophysics) by its general assembly in Canberra in 1979, belongs to

this group.

This system replaces the GRS67 for not adequately representing the size, shape and

gravitational field with sufficient precision for most geodetic, geophysical, astronomical and

hydrographic applications.
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The main parameters of the system are:

a = 6378137 m. (Obtained from SLR and Doppler measurements).

J2 = 108263 · 10-8 (Obtained from disturbances in the orbit of satellites).

GM = 3986005108 m3 / sg2 (Obtained from SLR, LLR and spatial tests).

ω = 7293115 · 10-11 rd / sg (Obtained from astronomical measurements).

The orientation of the Z axis will be that defined by the C.I.O. pole, as the X axis the

meridian 0 defined by the B.I.H. and the Y axis forming the right-handed triplet.

This system is still in force and its definition has not been updated since it must be

taken into account that below the meter in the difference of parameters, there is no practical

difference in the determination of coordinates. Thus, the improvements of the themselves are

considered scientific advances but the standard (GRS80) should not be changed.

When the information on the datum is obtained from positions within the orbit of the

satellites (dynamic determination of the system), the coefficients of the gravitational potential

(J2), as well as some constants (ω, speed of light, geocentric gravitational constant) are part of

the datum definition since they are all calculated together.

An example of this last group is the World Geodetic System 1984 (WGS84) used by

the GPS technique and obtained exclusively from the data of the GPS satellite constellation.

The values of its main parameters are:

a = 6378137 m

J2 = 108262,9983·10-8

GM = 3986004.418·108 m3/sg2

ω = 7293115·10-11 rd/sg
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1/f = 298.257223563

The World Geodetic System 1984 (WGS84) uses the I.E.R.S. pole as the Z axis and the

0-meridian defined by the I.E.R.S. as the X axis. and the Y axis forming the right-handed

triplet. Its origin coincides with the geocenter.

On a practical level, as can be deduced, the GRS80 and the WGS84 can be considered

identical.

2.1.3.2 Local geodetic reference systems. ED50

If ΔX ≠ ΔY ≠ ΔZ ≠ 0 we are faced with a local datum. The local frame is

defined by seven parameters (or, rather, 6 plus a condition): values for a and f (geometry of

the ellipsoid), values of the deviations from the vertical (ξ , η ) and the undulation of the

geoid (distance between the reference ellipsoid and the geoid), these three parameters are used

to obtain the orientation of the ellipsoid, the geodetic azimuth of a line and, as a condition,

that the semi-minor axis of the ellipsoid and the mean axis of the earth's rotation are parallel.

In addition, it is tried that the ellipsoid fits as much as possible to the area to be mapped, so

that the reduction of observations is as simple as possible.

An example of this type of system is the ED-50 (European Datum of 1950), a system to

which all Spanish cartography refers.

This system adopted the Hayford or International ellipsoid, introduced by the IUGG at

its 1924 general assembly in Madrid, where a and f were obtained from astronomical and

geodetic measurements in the United States.

a = 6378388

f = 1/297

Potsdam was adopted as a fundamental point, where the deviation from the vertical

(angular difference between the geodetic and astronomical vertical) and the undulation of the

geoid are known (ξ = 3”.36, η = 1” .78, N = 0), so that the ellipsoid is oriented with respect to

the Earth. It should be noted that setting the values of the deviation from the vertical (ξ, η) and
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the value of the undulation of the geoid N at the fundamental point to orient the ellipsoid is

equivalent to setting it from the X, Y, Z coordinates of its center with respect to the geocenter,

figure 7.

ED50's accuracy ranges from a few meters in central Europe to more than 10 meters in

the south, although its relative accuracy is much higher and more than sufficient for small-

and medium-scale mapping surveys, so in 1968, the Army Geographical Service adopted it

for its basic cartography 1/50000 and also the IGN in 1979.

Figure 7 Local geodetic system [4]

2.1.4 International Terrestrial Reference Frame (ITRF)

The conventional international terrestrial reference system is materialized through the

coordinates of a series of stations distributed throughout the world in that reference system,

constituting the ITRF (International Terrestrial Reference Frame), established and maintained

by the IERS.

Basically, the system that materializes is defined as geocentric (including the

atmosphere and oceans), the basis for the scale is the meter (in the international system) and

with the orientation of its axes as established by the BIH in 1984:

• Z axis: Middle pole determined by the IERS and called IERS Reference Pole (IRP) or

Conventional Terrestrial Pole (CTP).
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• X axis: Conventional Greenwich Meridian determined by the IERS and called IERS

Reference Meridian (IRM) or Greenwich Mean Origin (GMO).

• Y axis: Forming a right-handed triplet with the previous axes on the conventional equator

plane.

The frame is formed by Cartesian coordinates and speeds of a series of stations

equipped with spatial observation techniques (VLBI, SLR, LLR, GPS since 1991 and DORIS

since 1994), in figure 8 the stations for the ITRF2000 can be seen. If geodetic coordinates are

desired, the use of the GRS80 ellipsoid is recommended. These coordinates implicitly define

the origin, scale, and orientation of the X, Y, Z coordinate axes of the reference system.

Figure 8 Stations that make up the ITRF2000 symbolized according to the number of
different spatial techniques they use. (www.researchgate.net)

2.2 GNSS

The concept of GNSS is the generic standard term that encompasses Satellite

Navigation Systems that provides geospatial positioning with global coverage, both

autonomously and with augmentation systems. The beginnings date back to 1958, after the

launch of Sputnik 1, launched on October 4, 1957 by the Soviet Union, it was the first

artificial satellite in history to reach Earth orbit, a month later Sputnik is launched 2 and then,
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in 1958, the first American Vanguard I satellite. In this way, the decade of the 60s meant a

great commitment to navigation systems and that is how in 1964 the first satellites of the

NAVSTAR constellation were launched in the United States. In 1969 with the Apollo 11 space

mission, laser reflectors were placed on the Moon and that same year the first base was

measured by Very Long Baseline Interferometry (VLBI). In the 1980s, the United States

Department of Defense (DoD) developed GPS as a positioning and navigation system.

Important advances are made in VLBI and Doppler Orbitography and Integrated Radio

positioning by Satellite (DORIS) techniques. In the following years, the development of

Spatial Geodesy focused its efforts on establishing the world geodetic system, determining

geopotential models and measuring the Earth's gravity field. [17]

2.2.1 Land Use and Land Cover

Generally, Land use refers to how the land is used by people, while land cover refers

to the physical and actual categories of land. The information and data of the both land use

and land cover are often obtained from analysis of aerial and satellite imagery. Land cover

signifies the biological and physical cover of the ground, whether it is artificial structures,

vegetation, bare soil, water, or others [19]. Identification and mapping of land cover is

important for the monitoring and the change detection studies, resource management and for

future planning activities [20]. On the other hand, Land use has a more complicated aspect,

because it involves principles management and social sciences and refers to the purpose the

land serves, for example, habitat, recreation, agriculture, or other economic and social

purposes.

2.3 GNSS Signal

The satellites that make up the navigation and positioning system have clocks or

oscillators. These are atomic clocks for cesium, rubidium, and in some cases hydrogen. These

clocks generate waves, called carriers, and all the information is supported on them. Atomic

clocks maintain a stable and continuous time scale, they use the time pattern associated with

International Atomic Time (TAI). On the other hand, GNSS receivers use quartz oscillators.

2.4 GNSS Observation

The concept of observables in satellite navigation refers to the ranges that are deduced
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from the time measured between the signals received by the receiver (moment of reception)

and the signals generated by the satellite (moment of emission). Unlike terrestrial electronic

distance measurements, satellite navigation uses the “one-way concept” in which two clocks

intervene, one on the satellite and the other on the receiver. Therefore, the ranges are skewed

by satellite and receiver clock errors and are therefore denoted as pseudoranges. [18]. As

mentioned, [17], there are three groups of GPS observables:

• Time observables, which will allow obtaining the pseudo-distances from the code.

• Phase difference observables.

• Observable Doppler.

The new signal structures for GPS, GLONASS, GALILEO and BDS allow to generate code

and phase.

2.4.1 Pseudorange

As stated by [18] and as observed in figure 9, if we denote with satt the time of

emission of the signal referred to the reading of the satellite clock and with rect the time of

reception of the signal referring to the reading of the receiver clock, the errors of the clocks or

biases with respect to a common time system can be estimated, for which they are called satt

and rect . On the other hand, the difference between the clock readings is equivalent to the

time change t , which synchronizes the satellite and the reference signal during the code

correlation procedure at the receiver, as shown in figure 10 and is expressed in equation (2,1).
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Figure 9 Pseudorange signal [18]

  ttttt satsat
recrec

sat
rec ][][ (2.1)

Figure 10 Signal synchronization [18]

Now, as indicated by [19], in equation (2.1), rect and
satt are involved two different

time systems but now on the right-hand side of this equation rect and
satt are at the same

time system common and where
sat

rec ttt  y
sat

rec   . The
sat bias of the

satellite clock can be modeled if the respective information is transmitted accordingly by a

polynomial with the coefficients that are transmitted in the navigation message. In such a way
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that when multiplying the time interval of the expression
sat

rec tt  of equation (2.1) that is

affected by clock errors and by the speed of light, the code pseudorange expression is

expressed in the equation (2,2).

  cctcttcR sat
rec ][ (2.2)

On the other hand, as indicated [19], in practice, the clocks are not synchronized with

each other, both the receiver clock and the satellite clock have a drift with respect to the

system time and that together with others Errors make it impossible to accurately calculate the

distances, in this way the pseudorange or code measure is calculated by default. Which in

other words corresponds to the distance between the satellite's satt epoch and the receiver's

antenna position in the rect epoch. However, reality is not limited only to this, since in

addition to the problems mentioned, there are several errors that distort the signal when

crossing the atmosphere, such as relativistic effects, delays, multipath error and others of less

importance, which produce disturbances that they delay the signal. Therefore, the

pseudorange is expressed as observed in equation (2.3).

rec
a

sat
aim

ionotroposat
reci ttcR   )( (2.3)

Where:

iR = Pseudorange
 = Is the geometric distance between the satellite and the antenna phase center

(APC) of the receiver at the time of transmission and reception respectively.

c = speed of light

rect = Receiver state clock

satt = Satellite state clock

tropo = It is the delay in the signal caused by passing through the troposphere layer
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iono = It is the ionospheric effect produced by the signal passing through the

ionosphere layer, and given its dispersive nature, the term will depend on the frequency.

m = Errors due to the multipath effect of the observable code

i = Errors due to unmodeled effects that contribute to the observation noise

sat
a = Satellite antenna center correction
rec
a = Receiver antenna correction

2.4.2 Phase measurements

As stated by [20], it is affirmed that the synchronization between the carrier of the

received signal and the replica generated in reception allows obtaining a measure of the phase

of the carrier. This phase measurement can also be used to estimate the satellite and receiver

distance. Therefore, the distance measure can be calculated by measuring the integer N of

wavelengths  and the non-integer part  , as seen in equation (2.4) and in figure 11.

)(   ND (2.4)
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Figure 11 Phase measurements [18]

This simple idea is not easy to carry out given the difficulty of determining N , and this

problem is called the determination of ambiguities. The phase measurement is usually

expressed in carrier cycles. So, this distance will be equal to the integer number of carrier

cycles N elapsed since the signal left the satellite until it reaches the receiver, plus the

fraction of the cycle measured. The phase observable is the difference between the phase of

the carrier received from the satellite and the phase generated internally by the oscillator of

the receiver. These phase measurements are recorded at equal time intervals from the receiver,

and do not take into account the number of waves between the receiver and the satellite, but

the observable phase variations over time are correlated with changes in topocentric distance

[17].

In abbreviated form, the general equation of the phase observable can be expressed as

follows, see equation (2.5). [19]

im
ionotropoNc   (2.5)

The number of cycles between satellite and receiver depends on the phase generated by
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the oscillators. As in pseudorange, there are clock errors, and also in its route it suffers the

effects of delay or advance of the signal when crossing the atmosphere, and other errors such

as multipath. Therefore, in equation (2.6), the general expression in linear units is observed:

recsatrec
cf

sat
cfiim

ionotroposat
reci Nttc    )( (2.6)

Where:
 = Is the geometric distance between the satellite and the antenna phase center (APC)

of the receiver at the time of transmission and reception respectively.

c = speed of light

rect = Receiver state clock

satt = Satellite state clock

N = Represents ambiguity

tropo = It is the delay in the signal caused by passing through the troposphere layer

iono = It is the ionospheric effect produced by the signal passing through the

ionosphere layer, and given its dispersive nature, the term will depend on the frequency.

m = Errors due to the multipath effect of the observable code

i = Errors due to unmodeled effects that contribute to the observation noise

i = Windup effect of circular polarization of the electromagnetic signal with

sat
cf = Satellite antenna center correction
rec
cf = Receiver antenna correction
sat
 = Phase bias on satellite
rec
 = Phase bias on receiver
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Finally, in equation (2.7), it is expressed in cycle units:

pm

ionotropo

Nc 




 










(2.7)
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3 Mathematical Model

The research methodology is the plan followed in the study to reach the objectives of

the study, in which we explained the strategy that we followed in terms of collecting various

days of data, and the methods of processing and analyzing them.

3.1 Precise point position (PPP) method

Precise point position (PPP) [21] is a one common positioning method which are

applying in static or kinematic observation by using a single receiver and also using GNSS

CORS station observation data, satellite orbit and satellite clock products to find out best

precise accuracy for user. PPP method provide to all user a very high-level millimeter or

centimeter precise positioning accuracy. Lot of researchers are using this method for their

GNSS research and solved problem. In all over the world there is software used for PPP

method. Using a single receiver, it can be estimate position, velocity, troposphere delay,

ionosphere delay, satellite determination etc. PPP method have lot of application such as

water vapor monitoring, weather monitoring, lot of commercial and agricultural sectors.

3.1.1 PPP processing technique

The perfect product of GPS satellite orbit and real-time availability has been activated

the development of a global positioning system is known as the specific Precise Point

Positioning (PPP). The pseudorange and carrier phase observations are using single GPS

receiver to the position accuracy millimeter to centimeter level. So, in GNSS positioning

system community the importance of PPP is significantly expected [22]. PPP are used in

many sections for example monitoring position movement to maintain international reference

bases by filling the Global Positioning System (GPS). The accuracy of PPP method has

increased due to the use of accurate clock and satellite products. The PPP operating system all

PPP algorithm such as Kalman filter model, Functional Model, and also PPP stochastic model

are developed using data collected by dual frequency GPS receiver. Using technological

errors for example tropospheric error and error data coordination to measure all PPP models’

errors is believed to improve the accuracy of the position. Permanent Filter Safety is also used
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for evaluating state data as information on different positions and diversity. For verification,

we compare the all results to more at GNSS CORS data observation in International Service

Center (IGS) Analysis. Thus, the average position error is around the millimeters level in the

east-north-up direction.

3.1.2 PPP functional models

The functional model is one kind of precise positioning technique which represent a

clear relationship between unknown and the observations [23]. The functional model can

estimate GPS receiver and clock biases or many GPS biases positioning by using double

differencing (DD) technique. Therefore, on GPS precise positioning mode the functional

model is depends on the use of ionosphere-free linear combination in GPS observation. The

following functional model equation given below:
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Where,

)( ilS = Measurement of pseudorange on �� frequency, in meter unit

)( il = Measurement of carrier-phase on �� frequency, in meter unit

 = Receiver and satellite distance, unit is meter

c = Speed of light, unit is meter/second

T = Error (satellite clock), unit is second
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t = Error (receiver clock), unit is second

)( ilino = Ionosphere delay in frequency ��, unit is meter

trop = Zenith troposphere delay, unit is meter
r

lShd i ))(( = In �� frequency pseudorange measurement it is delay of receiver hardware

bias, unit is meter
s

lShd i ))(( = In �� frequency pseudorange measurement it is delay of satellite hardware

bias, unit is meter

))(( ilSmuti = Multipath error of �� frequency pseudorange measurement, unit is meter

))(( ilSnoise = Noise error of �� frequency pseudorange measurement, unit is meter

il
 = weave length of �� frequency carrier-phase measurement, in cycle unit

il
 = Ambiguity of �� frequency carrier-phase measurement, in cycle unit

ionofreeS = Ionosphere free measurement of pseudorange on �� frequency, in meter unit

ionofree = Ionosphere free measurement of carrier-phase on �� frequency, in meter

unit

ionofreel = Ionosphere free wave length of �� frequency carrier-phase measurement, in

cycle unit

ionofree = Ionosphere free Noise error of �� frequency pseudorange measurement, unit

is meter

3.1.3 Least square estimation

The least-squares estimation method is commonly used in GPS observation data

processing [24]. Last square method is a well-defined and useful rule for estimating

parameters and also quality control of assessing by GPS observation data processing are using

mathematical model [25]. The core stations are static, Last square estimation (LS) method is

more suitable for static solution. Filter method, e.g., Kalman filtering, might be suitable for

kinematic solution. In present GNSS research LS method is using by preudorange and carrier
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phase measurements to find out accurate precise point positioning also using dual frequency

GNSS receiver. GPS receiver positioning individually can happen error in preudorange or

carrier phase applications so by using preudorange measurement data we get very less precise

positioning with more movement. But again, using carrier phase data we get better precise

positioning with displacement but data accuracy is much high.

The following equation of last square estimation method is [26]:

PLAXV ; (3.6)

Where,

L = n dimensional of observation vector in this system

X = is m dimensional parameter of vector which is usually unknown parameter in

the system

V = is n dimensional residual vector of the system

A= is n by m dimensional coefficient of matrix of the estimation

P = is n by n dimensional symmetric matrix in this estimation and it is also weight

matrix

The last square estimation method equation error can be solved by the following

equation:

PVV T
= minimum of value (3.7)

Where,

TV = is transpose vector of n dimensional of residual vector matrix

PVAT = 0 (3.8)

Where,

TA = is transpose vector of n by m dimensional coefficient of this estimation matrix

Compare the equation of (3.6) and (3.7) we get from the equation:

PLAPAAX
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Now we have to know as,

PAAM T (3.10)

And
1)(  PAAQ T

X (3.11)

Hare, �, and �� are respectably known as normal and cofactors matrix in the

equation
2
0XQX  (3.12)

Hare Σ�= is covariance matrix of this equation and m dimensional parameter and also

0 is standard division and the complete equation of this last square estimation is following:

mn
PVV T


0

(Hare n is greater than m) (3.13)

Hare the other equation is

kkkkk PLXAV ; (3.14)

kV = �� dimensional residual matrix epoch time is �

kA = �� by m dimensional coefficient of matrix of epoch is �

kX = �� dimensional unknown parameter vector epoch is �

kL = �� dimensional observation vector and epoch time is �

kP = �� �� �� dimensional symmetric matric which � is epoch

)()( 11 1  
 kkX

T
kkkk

T
k XXPXXVPV

k = minimum of value (3.15)

Solving this (3.14) using (3.15) equation is following below:

0)( 11
  kkXkk

T
k XXPVPA

k (3.16)

Compare (3.14) and (3.16) equation we get from the following below,

0)()( 111
  kXkk

T
kkXkk

T
k XPLPAXPAPA

Kk (3.17)

So least squares solution is the following below from equation (3.18)
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So, equation (3.20) is the solution of least squares estimation
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Hare, Σ��= is covariance matrix of this equation and �� dimensional parameter and

also �0� is standard division and the complete equation of this last square estimation is

following:
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Where, in this last square estimation observation number is �� and epoch is �

3.2 Error Sources of PPP

3.2.1 Satellite Clock and receiver clock

Satellite clock error is one of the systematic errors in GPS positioning because it is

transmitted the navigation massage. And the receiver clock error is measurement from

difference receiver clock time and also GPS time. The receiver clock basis error is unknown

and it also assumed together with the receiver's location and receiver velocity. So, both of

satellite and receiver error can be estimated by using appropriate linear combination of

differential GPS [27].

In GNSS satellite clocks measurement are very accurate. But a small error of the

satellite clock which show a significant error in GNSS receiver positioning system. For
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example, in GNSS satellite clocks 20 nanoseconds error require can happened 6-meter

positioning error in GNSS receiver [28]. Receiver ground control system of GNSS is use

more accurate clock and also monitoring satellite clock. To get a good a precise positioning

the ground control GNSS receiver to recoup for GNSS satellite clock error. PPP service

system also provide in online satellite clock information to solve the satellite clock error. PPP

system or Space Based Argumentation System (SBAS) also correction satellite clock error for

precise positioning. There is another way is configuration of RTK receiver to make amends

for satellite clock error.

3.2.2 Satellite orbit

GNSS satellite travels on specific orbit, like satellite clocks. Ground control system of

GNSS is always monitoring this satellite orbit error. Satellite orbit is another significance

error GNSS positioning system tike satellite clock error. When GNSS satellite orbit changes

his moving way then ground control system send massage for correction, so satellite orbit

updated this information. Ground control system which are send to satellite for correction if

any effects in GNSS positioning system like ±2.5 meters positioning error can happen. To

solve the satellite orbit error one way is precise ephemeris information is upload from PPP

service and another way to solve configuration for RTK receiver.

3.2.3 Ionosphere delay.

An atmospheric layer between 80km to 600km of ionosphere. This level is said to

electric partials level. This electric partial means ions. And also, these ions can delay satellite

signals and create a usually ±5 meters positioning error. But at that time ionosphere activity

may be larger. Ionosphere delay depends on solar activates, season, day, time and location. So,

this delay is affected to calculate positions. There is another reason passing signal of radio

frequency in ionosphere is causes ionosphere delay. GNSS precise receiver �1 and �2 signal

and signals are measurement error. GNSS receiver can determine the ionosphere delay and

remove this error and calculate the positions. Also, ionosphere model can be used to remove

the error.

3.2.4 Troposphere delay

In earth’s atmosphere surface up to 50 km layer is the troposphere. The ionosphere
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delay and troposphere delay are dependent each other. It is not possible to remove the

troposphere error by using dual frequency GPS receivers. Satellite elevation angle and the

atmosphere condition is effects of GPS signal to create the troposphere error. The tropospheric

delay is divided into two component they are dry and wet. In total atmospheric conditions

about 90% is dry component which is depends on density of gas molecules. The wet

component is displacement due to electrons and water molecules. Water vapor is the reason

for wet atmosphere and difficult to model it. The effects of the troposphere are 2 m delay to

25 m with elevation angle is 5 degrees. For short baselines using DD (double differencing) to

estimate the troposphere errors and DD model is the part of estimation of this process. In my

research the last part is also about zenith troposphere delay (ZTD) analysis by using my

countries GNSS CORS station long time observation raw data. The analysis can deal with a

new concept and idea for me about troposphere affects in Peru.

3.2.5 Satellite antenna phase center offset and variation

The phase center is significant for GNSS satellite and receiver antenna. The phase

centers are measured distance between on ground GNSS receiver and GNSS satellite and its

serves as the last point. So, phase center offset (PCO) and phase center variation (PCV) value

are more important because they exact position are create modeled for experiment and

calculation. The center mass of satellite, reference point of receiver antenna and mean value

of phase center all are described by POC. And otherwise, to get accurate actual phase center

position PCV value is more important because it provide corrections foe zenith [29]. Mass of

satellite center is comparing to the GPS orbit. The GPS observation mention antennas phase

center and the antenna phase offset must be known. POC measurement is so difficult because

phase center is an electronic point not to be mechanical. In hare it’s considered an error in Z

direction [30]. Which is written by the following below.
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Figure 12 GPS error of z-direction effects
Where,

�=Radius of satellite

�=Radius of earth

�=satellite of receiver distance

�=Observation angle which is satellite to receiver and receiver to geometer vector and

it consider to zero station height and ZPD (zenith path delay) so this is the error of GPS

positioning [30].

GPS antenna is the most important element for GPS satellite and GPS receiver

because it always connecting each other. Antenna are receiving signal from satellite and it

converts into electronic component. On the other hand, in GPS positioning accurate antenna

PCO and PCV are another most critical factor. Some GPS user use very simple offset value

which are not enough value for precise positioning. Again, in GPS precise positioning other

GPS user avoid phase center correction factors. So, both are creating error for PPP method

and coordinate results are not very precise specially height direction [31].

3.2.6 Earth tide

The earth tides depend on motion of solid earth and its gravitational ability, inspired

by the external tides force. The evolution of fossils has the important paleontology, there
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experiment can provide lot of information about the earth tides, from some of the

measurements the model can be used to remove tidal variations and also used for trial effects

[32]. GPS technology is a very useful tools for crustal movement and also geodynamics

science. Using GPS system to monitor forecasting area of high earthquake and crustal

movement. We also consider the satellites error, receiver’s error, as well as take into tectonic

deformation effects, gravity of atmosphere, ocean and pole tide etc. For tectonic distortion

and get accurate value so this error should be analyzed and considered. Solid earth tide which

is the variable distortion of a period time due to the gravitational effects of sun and the moon

[33]. And the moon is most dominant.

The following equation from [34], [33] is solid earth model
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Where,

��= Earth's parameter of gravitation

���= Moon and sun parameter of gravitation (�=2, ����: �=3, ���)

�=Stations geocentric state vectors

��=Moon and sun geographic unit state vector (�=2, ����: �=3, ���)

�̂= Stations state vectors of the geocentric unit

�̂�= Moon and sun Station’s state vectors of the geocentric unit (�=2, ����: �=3,

���)

�2= Second degree of nominal love number

ℎ2= Dimensionless of nominal Shida number

�=Latitude of site stations

�= Longitude of site stations

�ᵍ=Mean of Greenwich Time

3.2.7 PPP algorithm

PPP algorithm are widely use in different application. For the accurate positioning

measurement PPP are using dual-frequency GPS receiver for determine to the positioning

accuracy level is centimeter to decimeter. We know, ionosphere effects are another important
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error in GPS positioning measurement. Dual frequency GPS receiver can eliminate the

ionosphere error. This requirement of dual frequency receiver’s importance. On the other

hands most of GPS receiver use single frequency because it is beneficial for PPP to

investigate the method and algorithm [35]. The following PPP algorithm observation equation

is given below [36]
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where,

�=Random variable of Pseudorange observation

Φ= Random variable of carrier phase observation

�=Index of receiver

�= Index of frequency

�=Measurement of time epoch

�=Geometric range

�= Index of satellite

�=Dispersion factor of ionosphere

�=Travel time of signal

�0=Speed of light (vacuum)

�=Systematic delay

�=Ambiguity of carrier phase

�=Error of code measurement

�=Carrier phase measurement

�= Linear combination of frequency

�= Linear combination of frequency

3.2.7.1 Single frequency algorithms

The first order ionosphere delay wiped out code-phase-carrier (CPC) combination [37].

The ionosphere-free code observation and phase observation are using single frequency GPS

receiver in GNSS precise positioning can defined the following equation [36]:
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From the equation (3.27) and (3.28) we get,
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3.2.7.2 Dual frequency algorithms

The ionosphere free linear combination is very costly and very noisy and create

measurement error for receiver and multipath. In GNSS precise positioning method are use

two different algorithms for ionosphere-free linear combinations such as ionosphere-free

linear combinations of carrier phase and ionosphere-free linear combinations of pseudorange

observations. The primary convergence makes a difference for pseudorange observations but

final solution is depending on carrier phase observations. The ionosphere free linear

combination of dual frequency equations is written the following method [36]:
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From the equation (3.27) and (3.28) and using ��=���0 we get,
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From equation (3.33) and (3.34) is ionosphere-free linear combinations as writing the

following equation:
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4 Program

4.1 Data collection

Peru has 69 GNSS receivers installed along its territory, these track precise positioning

data 24 hours per day and 365 days a year, figure 13.

Figure 13 Location GNSS receivers, operating radius 100 Km

With the data obtained from the GNSS receivers, it is possible to measure the variation

of the position of stations after a tectonic event [2]; as is the case of the seismic event that

occurred on May 26, 2019 at 02 hours - 41 minutes (Local time) [3] where there were

considerable movements in the nearby stations of the epicenter, whose hypocentral
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characteristics are shown in the following table:

Table 1 Hypocentral characteristics earthquake

The data was processed with scientific software PANDA software, obtained the

coordinates before and after the earthquake.

For my research I used 14 GNSS stations surrounding the earthquake, and processed data

to know the displacement of these GNSS stations.

Data was collected one week before and after earthquake, accounting 15 days for

processing data day per day, data was collected from receivers as raw data, and then storage in

memory hard of my institution, whole GNSS stations are TRIMBLE, and the first day data

collected was since May 19 (139 JD) until June 2 (153 JD) of 2019, each data was collected

day per day, each day are 24 hours, and 5 seg of recording interval.

GNSS data was extract from receiver, then putted in a directory’s day per day, each

directory day contain 14 GNSS stations, data origin is in format raw, *.T01 and *.T02 (Fig.

1.1) and is necessary get a program for convert these data in RINEX format.

Data is available per 24 hours each one and 5 sec interval epoch, in the table 2 show

data available per stations and days, “x” mean data completed and, red “x” mean data

completed seismic data day and “0” mean data unavailable, according data unavailable was

Feature Magnitude Comments

Latitude -05.74° ---

Longitude -75.55° ---

Depth 135 Km Intermediate focus event

Magnitude 8 Mw Magnitude

Reference 60 Km South of Lagunas Amazonas state

Maximum intensity VII Lagunas Yurimaguas Modified Mercalli scale

Date (UTC) 26/05/2019 Universal Time Coordinate

Start Time (UTC) 07h 41m Universal Time Coordinate
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because GNSS receiver didn’t recording for that day due electricity problems

Table 2 Data available per stations and days

4.2 Observation data information

The GNSS data observation format was RINEX 2.11, and other important data used

navigation, orbit and clock file. Navigation and orbit file was collected from IGS. RECEIVER

INDEPENDENT EXCHANGE (RINEX) is developed for Astronomical Institute of the

University of Berne for Global Positioning System (GPS) data to exchange for everyone all

over the word [a]. There are many versions in RINEX format, for example: RINEX 1, RINEX

2 is two sub version, in the rinex 2.10 and RINEX 2.11 only contains GPS data.

/ 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

AM01 X X X X X X X X X X X X X X X

AM03 X X X X X X X X X X X X X X X

AM05 X X X X X X X X X X X X X X X

CJ02 X X X X X X X X X X X X X X X

HC03 X X X X X X X X X X X X X X X

LB01 X X X X X X X X X X X X X X X

LR01 X X X X X X X X X X X X X X X

LR02 X X X X X X X X X X X X X X X

LR03 X X X X X X X X X X X X X X X

LR06 X X X X X X X X X X X X X X X

LR07 X X X X X X X X X X X X X X X

SM01 X X X X X X X X X X X X X X X

SM02 X X X X X X X X X X X X X X X

UC01 X X X X X X X X X X X X X X X
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Figure 14 Data RINEX information

4.3 Raw data to RINEX

Data obtained from receiver *.T0* needs to be convert to RINEX for that is necessary

use RUNPKR (Trimble) and TEQC (Unavco); RUNPKR for convert raw data (*.T0*) to *.dat

and TEQC for convert *.dat to RINEX.

Figure 15 Steps for convert raw data to RINEX

4.4 Quality Check

Check the quality using the QC portion, which is a process for quality checking static

Runpkrr Teqc Rinex*.T01/2
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and kinematic dual-frequency GPS. The basic step is that linear combination (LC) of the

pseudorange and carrier phase observations are used to compute L1 pseudorange multipath

for C/A- or Pcode-observations, L2 pseudorange multipath for Pcode-observations,

ionospheric phase effects, and the rate of change of the ionospheric delay. Information about

the receiver clock slips, receiver cycle slips (receiver loss of tracking of L1 and/or L2), site

multipath, satellite elevation and azimuth angles, receiver clock drift, receiver signal-noise

ratios and other useful parameters and tracking statistics is written to a summary file. The QC

report is called *.S which gives the main useful components related to the stations

surroundings and data quality. MP1, MP2 and o/slps (complete observation/slips above 10

elevation) are always collected and studied. MP1 evaluates the pseudorange multipath and

MP2 shows the pseudorange multipath and the noise intensity of the receivers. o/slps is

always represented as CSR, which can be calculated with the formula 4.1:

(4.1)

RINEX observation files teqc.exe Quality check files (*. S)

Figure 16 Parameters for good quality data considerations
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Figure 17 Quality Check – Multipath validation

Figure 18 Percentage of valid stations
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Table 3 Data Quality Check, MP

Figure 19 Quality Check – Percentage of observations & CSR Validation

Percentage of observation of station LR01 = 67.18% <85%. (BAD)

All stations satisfy CSR <10 criteria. (GOOD)

Validated stations after quality check

Both MPOK One MPOK None MPOK

HC03 AM03 AM01

LB01 AM05 LR06

LR01 CJ02 LR07

LR02 SM01 ---

LR03 UC01 ---

SM02 --- ---
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Observation Files

Data extracted from TEQC.exe SOFTWARE

Code for GNSS constellation:

Nothing GPS

R GLONASS

EGALILEO

SSBAS

BBEIDOU

Symbology meaning:

o Good observation data

Lrx lost clock

I Ionospheric phase slip

- No data SV above elev mask

MMultipath slip

N Good observation data

c no data L1 C1 (only L2 C2)
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Figure 20 Quality check information
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Observation Files

Data extracted from RTKLIB SOFTWARE

Figure 21 Satellite visibility

Figure 22 Satellite elevation angle
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Figure 23 Sky plot

4.5 Data processing

4.5.1 Download metadata (Orbit and Clock)

For process data RINEX in PANDA we need download metadata, necessary for process

this information.

The PPP technique is performed within the reference frame provided by the precise

satellite orbit and precise clock products. The broadcast ephemeris has a typical accuracy

about 1 meter for satellite position, which is not suitable for cm-level PPP data processing, but

can be used for data preprocessing. In PANDA software, the broadcast ephemeris data is also

needed for some purposes.

The final IGS GPS ephemeris and clock products are adopted for GPS PPP, which have

an accuracy of 2.5 cm (1D mean RMS) for satellite position and 20ps (standard deviation) for

satellite clock, respectively, as well as a typical latency about 12~18 days

(http://www.igs.org/products).

The IGS precision orbit products are in the SP3 format. It follows the naming rule:

igsWWWWD.sp3, where the WWWWD is the 5-character GPS week number the day of

week (for example: May 5th, 2013 in GPS Time is 17390, which means the GPS week

number is 1739, and the day of week is 0).

The IGS precision clock products follow the naming rule: igsWWWWD.clk. Particularly,

igsWWWWD.clk often contains the clock errors in 300-second interval, which is very

suitable for processing data at 300-second interval. But when we need to process the

30-second interval data, we need the 30-second interval clock products:

http://www.igs.org/products


Chapter 4 Program

48

igsWWWWD.clk_30s. For even higher sample rate, we will need the codWWWWD.clk_05s

products which is in 5-second interval.

It should be noted the IGS products are provided daily, which means it only contains the

satellite position and clock error information during the particular day which is referred to its

file name. (For example, igs17390.sp3 only contains the satellite orbits information on May

5th, 2013). So, we have to prepare the IGS products for the particular time of the observation

data. But for the PANDA software, it often needs 3 days products for interpolation. For

example:

If the RINEX data is on May 5th, 2013 (such as BJFS1250.13o), we will need the 3-

consecutive-day products (the date of the observation is in the middle): igs17386.sp3 (17386

in GPS time is May 4th, 2013), igs17390.sp3 (17390 in GPS time is May 5th, 2013),

igs17391.sp3, igs17386.clk, igs17390.clk, igs17391.clk.

The IGS products can be downloaded from the CDDIS ftp server:

 ftp://cddis.gsfc.nasa.gov/pub/gps/products/WWWW/igsWWWWD.sp3.Z

 ftp://cddis.gsfc.nasa.gov/pub/gps/products/WWWW/igsWWWWD.clk.Z

for example, the products on July 10th, 2013, the links for downloading the data is :

 ftp://cddis.gsfc.nasa.gov/pub/gps/products/1748/igs17483.sp3.Z

 ftp://cddis.gsfc.nasa.gov/pub/gps/products/1748/igs17483.clk_30s.Z

4.5.2 PANDA processing

The PANDA software includes many modules:

 Clnrnx: observation data preprocessing. This module will check the observation quality,

detect the cycle slip and gross errors in the carrier phase observations. It will also

cancel the arcs with too little available epochs. After running clnrnx, log files will be

generated, which contains the arcs, ambiguities information.

 Mergesp3: this module will merge the 3- consecutive-day products (Sp3 and Clk

products) to one single file.

ftp://cddis.gsfc.nasa.gov/pub/gps/products/WWWW/igsWWWWD.sp3.Z
ftp://cddis.gsfc.nasa.gov/pub/gps/products/WWWW/igsWWWWD.clk.Z
ftp://cddis.gsfc.nasa.gov/pub/gps/products/1748/igs17483.sp3.Z
ftp://cddis.gsfc.nasa.gov/pub/gps/products/1748/igs17483.clk_30s.Z
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 Sp3orb: this module will convert the merged sp3 file to a binary file, which contains

the GPS orbits information. We do this for fast orbit interpolation.

 Lsq: this the Estimator which estimates the parameters including station position,

receiver clock error, ZTDs, etc.

 Up_sit: this module will renew the a priori station coordinates.

 Extclk: this module will extract the receiver clock errors from the res- file which is

generated from Lsq.

 Edtres: this module will check the observations again. Since more precise coordinates

are estimated, the threshold for check data will be reduced down gradually.

 Mkztd: this module will extract the ZTD from the res- file which is generated from Lsq.

Figure 24 Modules of PANDA for process

4.5.3 Instruction on precise point positioning using PANDA

Dual frequency are code range and carrier phase are using in this PANDA software for

PPP (Precise Point Positioning) technique. We know ionosphere delay is one main error in

GNSS data observations. This dual frequency can enumeration this ionosphere delay. Other

GNSS observation error is troposphere delay, multipath error, satellite clock error, receiver
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clock error still. Dual frequency are code range and carrier phase called respectably PC and

LC. GNSS data observation equation of Precise Point Positioning is given below:

  ))(().())()(()()( kbAkZTDkTktckkQ llll
(4.2)

  ).())(().())()(()().( kDkbAkZTDkTktckkR lllll

(4.3)

Where,

k = Epoch number

l = Satellite number

��(�) = PC Observation

��(�) = �� �����������

��(�) = �������� ������� ���� ������ ������� ��� ���������

��(�) = �������� �����
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IGS provided all kinds of products for example in this PANDA software we get all

satellite orbit and clock products get from IGS side. Phase center variation (PCV) and other

important things antenna phase center offset (PCO). Those two-error correction from IGS. We

know with weather conditions of ZTD component changes conspicuously. In Precise Point

Positioning processing PPP system ZWD use the piece-wise constant (PWC) parameter for

estimation.

4.5.4 Data preparation for precise point positioning

In this PANDA software for PPP RINEX Observation data, RINEX broadcast ephemeris

and GPS satellite orbit and clock products is most three important parts. I get GNSS data

since May 19 (139 JD) until June 2 (153 JD) of 2019, observation data from my country. This
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observation data should be RINEX 2.11 format. And also, this data day by day 24 hours.

Other most important data BRDC RINEX broadcast ephemeris and GPS satellite orbit and

clock products collects from IGS side as same date like my country’s observation file.

Table 4 GNSS data collections information

4.5.5 GNSS station diagram

In this research used GNSS station high accuracy, these GNSS receiver are distributed a

long territory of Peru, and these are located according international standards.

Figure 25 Monument of GNSS station

Data Type Date Example Download Source

Raw Data 19/05/2019 – 02/06/2019 SITEDOY0.T02 Survey of Peru

Rinex Observation 19/05/2019 – 02/06/2019 SITEDOY0.YYo Survey of Peru - TEQC

RINEX Broadcast
ephemeris

19/05/2019 – 02/06/2019 brdcDOY0.YYn
IGS site or any web side

– IGS Final

Satellite Orbit 19/05/2019 – 02/06/2019
igsWWWWD.sp3 IGS site or any web side

– IGS Final
Clock Products

19/05/2019 – 02/06/2019
igsWWWWD.clk_30s IGS site or any web side

– IGS Final
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Figure 26 Antenna diagram (www.trimble.com)
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5 Examples and Results

5.1 Research area and data

This research is focus on GNSS data processing of 14 GNSS stations surrounding

earthquake 8 MW magnitude, analysis before and after earthquake, the main of this research

is know the behavior and displacement occurred because earthquake. Data of whole GNSS

stations was processed in PANDA software. In this thesis depends on two main tasks, first one

is high accuracy GNSS RINEX data processing and other most important determination

displacement occurred of earthquake and analysis part.

Figure 27 Location GNSS stations sites

The collects GPS raw data was extract from backup of National Geographic Institute of

Peru (https://www.gob.pe/ign).

As we can see in the table 5, the distance between GNSS station and epicenter

earthquake, the station more near is the LR02 station with 148 km, located in northwest part

from epicenter, the LR07 and SM02 stations have little same distance but in opposite site,

same to UC01, AM03 and LR01 with 320 km distance from epicenter, whole them different

https://www.gob.pe/ign
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directions respect to the epicenter, and finally the station more far is LB01, with 490 km from

epicenter earthquake, this station is in the cost part of Peru exactly in the west part from

epicenter.

These GNSS stations was selected to know the displacement each one and how is the

behavior respect to the distance from epicenter and know the correlation with distance among

them.

Table 5 Distance between GNSS station and epicenter earthquake

/ Name Distance (Km)

LR02 San Lorenzo 148

SM01 Moyobamba 163

LR06 Contamana 190

LR07 Requena 202

SM02 Juanjui 208

LR03 Nauta 258

AM01 Chachapoyas 263

AM05 Pomacochas 270

UC01 Pucallpa 316

AM03 Bagua 328

LR01 Belen 333

CJ02 Cutervo 370

HC03 Huanuco 474

LB01 Chiclayo 490
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Table 6 GNSS station information

5.2 Data processing strategies for PPP

5.2.1 Error correction

Up to now we've been treating the calculations that go into GPS very abstractly, as if the

whole thing were happening in a vacuum. But in the real world there are lots of things that

can happen to a GPS signal that will make its life less than mathematically perfect.

These are errors induced by the satellite's location (Table 7). An 'ephemeris error'

/ Name Receiver Antenna Dome Zone

LR02 San Lorenzo NET R9 TRIMBLE
Zephyr Geodetic

model 3
yes 18

SM01 Moyobamba NET R8 TRIMBLE
Zephyr Geodetic

model 2
yes 18

LR06 Contamana NET R9 TRIMBLE
Zephyr Geodetic

model 3
yes 18

LR07 Requena NET R9 TRIMBLE
Zephyr Geodetic

model 3
yes 18

SM02 Juanjui NET R8 TRIMBLE
Zephyr Geodetic

model 2
yes 18

LR03 Nauta NET R9 TRIMBLE
Zephyr Geodetic

model 3
yes 18

AM01 Chachapoyas NET R8 TRIMBLE
Zephyr Geodetic

model 2
yes 18

AM05 Pomacochas NET R9 TRIMBLE
Zephyr Geodetic

model 3
yes 18

UC01 Pucallpa NET R8 TRIMBLE
Zephyr Geodetic

model 2
yes 18

AM03 Bagua NET R8 TRIMBLE
Zephyr Geodetic

model 2
yes 17

LR01 Belen NET R8 TRIMBLE
Zephyr Geodetic

model 2
yes 18

CJ02 Cutervo NET R9 TRIMBLE
Zephyr Geodetic

model 3
yes 17

HC03 Huanuco NET R8 TRIMBLE
Zephyr Geodetic

model 2
yes 18

LB01 Chiclayo NET R8 TRIMBLE
Zephyr Geodetic

model 2
yes 17
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describes the difference between the expected and actual orbital position of a GNSS satellite.

Because GNSS receivers use the satellite's location in pseudorange calculations, orbital error

reduces GNSS accuracy.

Table 7 Error correction

5.2.2 Parameter

The most important result obtained from PANDA is the ac-curate estimate of the position

of GNSS stations. Besides, PANDA also estimates the orbital and Earth-rotation parameters,

zenith delays, and phase ambiguities by fitting to doubly differenced phase observations with

the incorporation of a weighted least-squares algorithm. Since the functional (mathematical)

model that relates observations to parameters is nonlinear, PANDA produces two solutions:

the first provides coordinates within a few decimeters, and the second gives the final

estimates.

This step requires the user to specify a priori finite constraint for each estimated

parameter (Table 8). To avoid biasing the combination, PANDA generates the solution used

by PANDA with loose parameter constraints. However, since phase ambiguities must be

resolved (if possible) in phase processing, PANDA also generates several intermediate

solutions with user-defined constraints before loosening the constraints for its final solution.

Error Correction

Error Correction

Orbit Sp3, IGS final precise ephemeris

Clock Precise clock products, 30 seconds interval

Ionosphere Ionosphere free linear combination

Troposphere Calculate using Saastamoinen model and
parameter estimation

PCO (Satellite phase center offset) Correction of GPS

PCV (Satellite phase center
variation) Correction of GPS

Elevation angle cutoff 5°
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Table 8 Parameter

5.3 GNSS stations coordinates displacement result analysis

5.3.1 AM01 station

Distance between earthquake epicenter to AM01 station is 263 Km, and the result about

data processing is show in Figure 28, as we can see mild displacement in North and East. In

the component North we can see mild displacement to south and, in the component, mild

displacement to west, and in the component Up not much variability, only some stuttering

reason is why in vertical component always we cannot get good accuracy after processing.

Figure 28 AM01 station daily North, East and Up direction position

As we can see in the table 9, we can see the ENU coordinates, considering the first day

Parameter name Assessment

Coordinate X, Y, Z site observation station coordinate, 5
second interval

Clock Epoch-wise, 5 seconds

ZTD 2-hours precise wise constant (PWC)

Ambiguity Estimated as constant, the ambiguities between
a baseline-by-baseline it resolved
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in zero as the initial coordinate, we can see the next day’s how is changing along the days

before and after earthquake, in the red 146 doy represent earthquake, after that occurred a

displacement 5.27 cm west and 1.15 cm south direction.

Table 9 AM01 station daily coordinate towards the east north and up direction (cm)

Doy E N U

139 0.00 0.00 0.00

140 -0.72 0.71 -0.01

141 -0.23 0.75 0.32

142 0.90 1.36 1.76

143 -0.79 1.43 1.47

144 1.04 0.57 -0.54

145 0.33 0.92 0.28

146 -4.00 -0.34 -0.40

147 -4.11 -0.43 0.09

148 -4.37 -0.29 -0.75

149 -6.55 -0.74 1.35

150 -6.21 0.03 0.87

151 -4.83 -0.81 -1.16

152 -6.16 -0.07 1.44

Average E Average N Average U

BE: 0.08 0.82 0.47

AE: -5.19 -0.34 0.39

∆: -5.27 -1.15 -0.08
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5.3.2 AM03 station

The AM03 station is located in Amazonas city, and the distance between earthquake

epicenter to AM03 station is 328 Km, and the result about data processing is show in Figure

29, as we cannot see much displacement. In the component North and west they can see the

average is constant, little catering surrounding 1cm we can say not much displacement the this

GNSS station, and in the component Up not much variability, only some stuttering reason is

why in vertical component always we cannot get good accuracy after processing.

Figure 29 AM03 station daily North, East and Up direction position

As we can see in the table 10, we can see the ENU coordinates, considering the first day

in zero as the initial coordinate, we can see the next day’s how is changing along the days

before and after earthquake, in the red 146 doy represent earthquake, after that occurred a

displacement 0.02 cm east and 0.08 cm north direction, actually We cannot see enough

displacement in this GNSS station.
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Table 10 AM03 station daily coordinate towards the east north and up direction (cm)

Also, we can see the average coordinate before earthquake surrounding -0.27 cm in

component west and 0.49 in component north, after earthquake changed such as -0.26 cm east

and 0.57 cm north, the result is a displacement south - east direction. In the case of vertical

component, we cannot see displacements, only the movement was surrounding 0.8 mm, is a

Doy E N U

139 0.00 0.00 0.00

140 0.43 0.70 0.91

141 -0.08 0.50 1.93

142 0.16 0.66 1.67

143 -0.75 1.02 5.84

144 -0.81 0.74 5.12

145 -0.86 -0.22 2.14

146 -0.52 0.09 2.03

147 -0.45 0.59 3.43

148 -0.13 0.78 2.99

149 -0.81 0.25 3.51

150 0.16 0.56 1.35

151 0.13 0.54 1.34

152 NaN NaN NaN

153 -0.47 0.67 3.76

Average E Average N Average U

BE: -0.27 0.49 2.52

AE: -0.26 0.57 2.73

∆: 0.02 0.08 0.21
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little difference.

5.3.3 AM05 station

AM05 station is 270 Km from epicenter earthquake, and this station is little same to

AM01 in radial distance from earthquake, in the figure 30 we can see the movement a long

the time respect to earthquake, in North component we can see little change along the time,

and in the East component significative change after earthquake, in the horizontal component

the variability are surrounding 4 cm into 14 days processed.

Figure 30 AM05 station daily North, East and Up direction position

In the table 11, We can see the coordinate day per day, processed in static mode, the red

146 doy represent the earthquake day, after that they change some centimeters as we can see

in the figure 30 and table in mention. The coordinate is in ENU considering the first day as

zero, the average coordinate before earthquake was -0.07 cm east and -0.02 north, after

earthquake changed to -4.28 east and -0.97 north, in vertical component not much difference

such as we can see in the table in mention.
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Table 11 AM05 station daily coordinate towards the east north and up direction (cm)

Also, we can see the displacement occurred after earthquake, had 4.2 cm displacement

west component and 0.95 cm to the south, surrounding 1 cm in this last component, in vertical

component 0.84 cm up.

Doy E N U

139 0.00 0.00 0.00

140 -1.50 -0.07 -0.38

141 0.47 -0.18 0.19

142 -1.05 -0.52 1.75

143 1.63 0.44 4.93

144 0.51 -0.01 3.48

145 -0.57 0.20 2.16

146 -4.45 -0.87 0.26

147 -4.11 -0.96 2.44

148 -4.51 -1.21 3.05

149 -5.30 -1.00 2.19

150 -4.92 -0.08 0.27

151 -3.05 -0.65 1.93

152 -4.38 -1.36 4.05

153 -3.65 -1.54 4.05

Average E Average N Average U

BE: -0.07 -0.02 1.73

AE: -4.28 -0.97 2.57

∆: -4.20 -0.95 0.84



BUAAAcademic Dissertation for Master’s Degree

63

5.3.4 CJ02 station

Distance between earthquake epicenter to CJ02 station is 370 Km, and the result about

data processing is show in Figure 31, as we can see mild displacement in North and East. In

the component North we can see mild displacement to south and, in the component, mild

displacement to west, and in the component Up not much variability, only some stuttering

reason is why in vertical component always we cannot get good accuracy after processing.

Figure 31 CJ02 station daily North, East and Up direction position

As we can see in the table 12, we can see the ENU coordinates, considering the first day

in zero as the initial coordinate, we can see the next day’s how is changing along the days

before and after earthquake, in the red 146 doy represent earthquake, after that occurred a

displacement 3.64 cm west and 0.68 cm south direction.
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Table 12 CJ02 station daily coordinate towards the east north and up direction (cm)

Also, we can see the average coordinate before earthquake surrounding 0.31 cm in

component east and 0.16 in component south, after earthquake changed such as 3.33 cm west

and 0.84 cm south, the result is a displacement south - west direction. In the case of vertical

component, we cannot see displacements, only the movement was surrounding 0.02 mm, is a

Doy E N U

139 0.00 0.00 0.00

140 -0.94 0.14 -0.01

141 1.07 -0.54 -0.09

142 0.82 -0.19 2.87

143 0.38 -0.71 3.85

144 0.58 0.16 2.98

145 0.26 0.03 2.60

146 -2.35 -0.66 0.74

147 -1.62 -1.35 4.97

148 -2.89 0.01 0.05

149 -4.02 -0.78 2.33

150 -5.78 -0.45 -0.10

151 -3.56 -1.39 -0.25

152 -4.22 -1.07 2.91

153 -1.21 -0.85 2.44

Average E Average N Average U

BE: 0.31 -0.16 1.74

AE: -3.33 -0.84 1.76

∆: -3.64 -0.68 0.02
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little difference.

5.3.5 HC03 station

HC03 station is 474 Km from epicenter earthquake, and this station is little same to

LB01 in radial distance from earthquake, in the figure 32 we can see the movement along the

time respect to earthquake, in North component we can see little change along the time, and in

the East component significative change after earthquake, in the horizontal component the

variability is surrounding 4 cm into 14 days processed.

Figure 32 HC03 station daily North, East and Up direction position

In the table 13, we can see the coordinate day per day, processed in static mode, the red

146 doy represent the earthquake day, after that they change some centimeters as we can see

in the figure 30 and table in mention. The coordinate is in ENU considering the first day as

zero, the average coordinate before earthquake was 1.68 cm east and 0.16 north, after

earthquake changed to 0.96 west and 0.17 south, in vertical component not much difference

such as we can see in the table in mention.
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Table 13 HC03 station daily coordinate towards the east north and up direction (cm)

Also, we can see the displacement occurred after earthquake, had 0.73 cm displacement

west component and 0.17 cm to the south, surrounding 1 cm in this last component, in vertical

component 0.95 cm down.

Doy E N U

139 0.00 0.00 0.00

140 1.41 0.06 1.14

141 2.82 -0.27 1.96

142 2.38 0.23 4.41

143 1.84 0.31 4.67

144 1.99 0.19 2.09

145 1.35 0.70 2.12

146 1.71 -0.06 3.05

147 2.28 0.30 3.13

148 1.53 -0.15 0.92

149 -1.28 -0.31 1.30

150 -0.93 0.26 0.69

151 0.59 -0.52 -0.80

152 2.66 0.09 2.93

153 1.84 0.36 1.53

Average E Average N Average U

BE: 1.68 0.17 2.34

AE: 0.96 0.01 1.39

∆: -0.73 -0.17 -0.95
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5.3.6 LB01 station

Distance between earthquake epicenter to LB01 station is 490 Km, and the result about

data processing is show in Figure 33, as we can see mild displacement in North and East. In

the component North we can see mild displacement to south and, in the component, mild

displacement to west, and in the component Up not much variability, only some stuttering

reason is why in vertical component always we cannot get good accuracy after processing.

Figure 33 LB01 station daily North, East and Up direction position

As we can see in the table 14, we can see the ENU coordinates, considering the first day

in zero as the initial coordinate, we can see the next day’s how is changing along the days

before and after earthquake, in the red 146 doy represent earthquake, after that occurred a

displacement 2.17 cm west and 0.27 cm south direction.
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Table 14 LB01 station daily coordinate towards the east north and up direction (cm)

Also, we can see the average coordinate before earthquake surrounding 0.15 cm in

component east and 0.11 in component north, after earthquake changed such as 2.02 cm west

and 0.17 cm south, the result is a displacement south - west direction. In the case of vertical

component, we can see displacements, the displacement was 1.42 cm down.

Doy E N U

139 0.00 0.00 0.00

140 -0.91 0.05 0.59

141 0.86 0.29 1.11

142 0.28 -0.48 4.72

143 -0.76 -0.26 3.02

144 2.12 0.49 4.43

145 -0.56 0.65 3.77

146 -1.82 -0.59 0.91

147 -1.37 0.04 2.15

148 -1.49 -0.90 1.23

149 -1.56 0.44 2.13

150 -4.18 0.42 -0.74

151 -2.28 -0.22 -0.08

152 -2.42 -0.94 1.33

153 -0.83 0.00 1.69

Average E Average N Average U

BE: 0.15 0.11 2.52

AE: -2.02 -0.17 1.10

∆: -2.17 -0.27 -1.42
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5.3.7 LR01 station

LR01 station is 333 Km from epicenter earthquake, and this station is little same to

AM03 and UC01 in radial distance from earthquake, in the figure 34 we can see the

movement along the time respect to earthquake, in North component we can see little change

along the time, and in the East component significative change after earthquake, in the

horizontal component the variability is surrounding 4 cm into 14 days processed.

Figure 34 LR01 station daily North, East and Up direction position

In the table 15, we can see the coordinate day per day, processed in static mode, the red

146 doy represent the earthquake day, after that they change some centimeters as we can see

in the figure 34 and table in mention. The coordinate is in ENU considering the first day as

zero, the average coordinate before earthquake was 0.10 cm west and 0.43 south, after

earthquake changed to 0.48 east and 0.41 north, in vertical component not much difference

such as we can see in the table in mention.
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Table 15 LR01 station daily coordinate towards the east north and up direction (cm)

Also, we can see the displacement occurred after earthquake, had 0.1 cm displacement

west component and 0.43 cm to the south, surrounding 0.8 cm in this last component, in

vertical component 1.09 cm down.

Doy E N U

139 0.00 0.00 0.00

140 -1.01 -0.04 -0.85

141 0.16 -0.33 -2.35

142 -0.50 -0.72 -0.61

143 -0.07 -1.26 -1.58

144 0.90 -1.32 -0.96

145 -0.15 0.68 -2.95

146 0.49 0.16 -1.46

147 0.50 -0.28 -1.30

148 0.54 1.11 -3.59

149 0.50 0.43 -0.65

150 -0.27 0.85 -4.16

151 -0.28 0.53 -4.38

152 0.68 0.25 -1.96

153 1.66 -0.02 -0.86

Average E Average N Average U

BE: -0.10 -0.43 -1.33

AE: 0.48 0.41 -2.41

∆: 0.57 0.84 -1.09
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5.3.8 LR02 station

LR02 station is 148 Km from epicenter earthquake, and this station is little same to

SM01 in radial distance from earthquake, in the figure 35 we can see the movement along the

time respect to earthquake, in North component we can see little change along the time, and in

the East component significative change after earthquake, in the horizontal component the

variability is surrounding 5 cm into 14 days processed.

Figure 35 LR02 station daily North, East and Up direction position

In the table 16, we can see the coordinate day per day, processed in static mode, the red

146 doy represent the earthquake day, after that they change some centimeters as we can see

in the figure 35 and table in mention. The coordinate is in ENU considering the first day as

zero, the average coordinate before earthquake was 0.50 cm west and 0.21 south, after

earthquake changed to 2.36 west and 0.49 south, in vertical component we can see a little

increasing the from down to up.
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Table 16 LR02 station daily coordinate towards the east north and up direction (cm)

Also, we can see the displacement occurred after earthquake, had 2.86 cm displacement

west component and 0.28 cm to the south, surrounding 2 cm in this last component, in vertical

component 1.34 cm up.

Doy E N U

139 0.00 0.00 0.00

140 1.69 0.05 1.14

141 -0.19 -0.66 0.19

142 0.86 0.19 2.65

143 0.80 0.03 3.14

144 0.79 -1.21 0.99

145 -0.44 0.14 3.56

146 -3.04 -0.78 4.81

147 -1.90 -0.88 2.89

148 -2.70 -0.83 0.62

149 -1.92 -0.29 4.33

150 -2.86 0.47 2.26

151 -1.40 -0.69 1.38

152 -2.56 -0.39 4.70

153 -3.15 -0.83 4.88

Average E Average N Average U

BE: 0.50 -0.21 1.67

AE: -2.36 -0.49 3.01

∆: -2.86 -0.28 1.34
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5.3.9 LR03 station

LR03 station is 258 Km from epicenter earthquake, and this station is little same to

AM01 and AM05 in radial distance from earthquake, in the figure 36 we can see the

movement along the time respect to earthquake, in North component we can see little change

along the time, and in the East component significative change after earthquake, in the

horizontal component the variability is surrounding 6 cm into 14 days processed.

Figure 36 LR03 station daily North, East and Up direction position

In the table 17, we can see the coordinate day per day, processed in static mode, the red

146 doy represent the earthquake day, after that they change some centimeters as we can see

in the figure 36 and table in mention. The coordinate is in ENU considering the first day as

zero, the average coordinate before earthquake was 0.08 cm east and 0.26 north, after

earthquake changed to 1.32 west and 0.45 north, in vertical component not much difference

such as we can see in the table in mention.
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Table 17 LR03 station daily coordinate towards the east north and up direction (cm)

Also, we can see the displacement occurred after earthquake, had 1.40 cm displacement

Doy E N U

139 0.00 0.00 0.00

140 -0.08 0.91 -0.75

141 2.59 0.00 0.83

142 0.08 0.12 -1.00

143 -3.10 0.27 0.27

144 0.22 0.47 3.23

145 0.86 0.05 -0.10

146 -2.03 0.56 4.70

147 0.09 0.51 0.44

148 -2.81 -0.16 -2.08

149 -5.31 -0.21 -0.34

150 -0.51 0.91 -1.74

151 -1.31 1.85 0.66

152 0.53 0.47 0.28

153 0.10 -0.21 0.41

Average E Average N Average U

BE: 0.08 0.26 0.35

AE: -1.32 0.45 -0.34

∆: -1.40 0.19 -0.69
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west component and 0.19 cm to the south, surrounding 1.5 cm in this last component, in

vertical component 0.69 cm down.

5.3.10 LR06 station

LR06 station is 190 Km from epicenter earthquake, in the figure 37 we can see the

movement along the time respect to earthquake, in North component we can see significative

change along the time, and in the East component little change after earthquake, in the

horizontal component the variability is surrounding 10 cm into 14 days processed.

Figure 37 LR06 station daily North, East and Up direction position

In the table 18 we can see the coordinate day per day, processed in static mode, the red

146 doy represent the earthquake day, after that they change some centimeters as we can see

in the figure 37 and table in mention. The coordinate is in ENU considering the first day as

zero, the average coordinate before earthquake was 0.85 cm east and 0.20 south, after

earthquake changed to 1.49 west and 3.53 north, in vertical component not much difference
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such as we can see in the table in mention.

Table 18 LR06 station daily coordinate towards the east north and up direction (cm)

Doy E N U

139 0.00 0.00 0.00

140 -1.42 0.43 -2.74

141 1.27 -0.37 0.48

142 1.55 -0.68 1.76

143 1.90 -0.28 2.97

144 1.03 0.16 2.99

145 1.60 -0.63 3.90

146 -0.69 2.49 1.23

147 -1.60 3.21 -2.19

148 -0.59 3.90 -3.52

149 -1.69 4.63 -2.83

150 -4.46 2.88 -8.77

151 -2.86 3.33 3.54

152 -0.84 3.45 -1.50

153 1.62 3.32 -3.10

Average E Average N Average U

BE: 0.85 -0.20 1.34

AE: -1.49 3.53 -2.62

∆: -2.34 3.73 -3.96
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Also, we can see the displacement occurred after earthquake, had 2.34 cm displacement

west component and 3.73 cm to the north, surrounding 3.7 cm in this last component, in

vertical component 3.96 cm down.

5.3.11 LR07 station

LR07 station is 202 Km from epicenter earthquake, and this station is little same to

SM02 and LR06 in radial distance from earthquake, in the figure 38 we can see the movement

along the time respect to earthquake, in North component we can see little change along the

time, and in the East component little change after earthquake, in the horizontal component

the variability is rounding 4 cm into 14 days processed.

Figure 38 LR07 station daily North, East and Up direction position

In the table 19, we can see the coordinate day per day, processed in static mode, the red

146 doy represent the earthquake day, after that they change some centimeters as we can see

in the figure 38 and table in mention. The coordinate is in ENU considering the first day as
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zero, the average coordinate before earthquake was 0.83 cm west and 0.21 south, after

earthquake changed to 2.16 west and 0.60 south, in vertical component we can see a little

increasing the from up to down.



BUAAAcademic Dissertation for Master’s Degree

79

Table 19 LR07 station daily coordinate towards the east north and up direction (cm)

Also, we can see the displacement occurred after earthquake, had 2.86 cm displacement

west component and 0.28 cm to the south, surrounding 2 cm in this last component, in vertical

component 1.34 cm up.

Doy E N U

139 0.00 0.00 0.00

140 -1.15 -0.37 -0.98

141 -1.15 0.24 0.16

142 -0.28 -1.22 -0.57

143 -1.13 -0.41 -0.05

144 -1.64 0.22 0.87

145 -0.46 0.06 2.11

146 -2.24 -0.22 -3.21

147 -1.50 -0.74 -1.55

148 -1.95 0.21 -3.59

149 -0.54 -0.26 -0.83

150 -3.25 -0.59 -4.65

151 -3.17 -1.77 -4.49

152 -3.12 -0.53 -2.22

153 -1.61 -0.56 -1.29

Average E Average N Average U

BE: -0.83 -0.21 0.22

AE: -2.16 -0.60 -2.66

∆: -1.34 -0.39 -2.88
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5.3.12 SM01 station

SM01 station is 163 Km from epicenter earthquake, and this station is little same to

LR02 in radial distance from earthquake, in the figure 39 we can see the movement along the

time respect to earthquake, in North component we can see little change along the time south

direction, and in the East component significative change after earthquake south direction, in

the horizontal component the variability is rounding 7 cm into 14 days processed.

Figure 39 SM01 station daily North, East and Up direction position

In the table 20, we can see the coordinate day per day, processed in static mode, the red

146 doy represent the earthquake day, after that they change some centimeters as we can see

in the figure 39 and table in mention. The coordinate is in ENU considering the first day as

zero, the average coordinate before earthquake was 0.57 cm west and 0.26 south, after

earthquake changed to 5.15 west and 2.76 south, in vertical component we can see a little

increasing the from down to up.
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Table 20 SM01 station daily coordinate towards the east north and up direction (cm)

Also, we can see the displacement occurred after earthquake, had 3.58 cm displacement

west component and 2.41 cm to the south, rounding 2.5 cm in this last component, in vertical

component 2.94 cm up.

Doy E N U

139 0.00 0.00 0.00

140 -5.48 -0.57 -2.80

141 -1.67 -0.26 -3.13

142 1.14 -0.29 0.89

143 -0.85 -0.71 -0.83

144 -1.60 0.17 0.30

145 -2.53 -0.15 -0.91

146 -7.43 -2.38 -2.84

147 -2.96 -2.30 4.09

148 -4.81 -2.89 4.43

149 -5.21 -5.60 3.03

150 -6.44 -1.95 -0.35

151 -7.35 -2.19 -1.62

152 -6.34 -1.82 1.09

153 -2.94 -1.97 3.43

Average E Average N Average U

BE: -1.57 -0.26 -0.93

AE: -5.15 -2.67 2.02

∆: -3.58 -2.41 2.94
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5.3.13 SM02 station

SM02 station is 208 Km from epicenter earthquake, and this station is little same to

LR06 and LR07 in radial distance from earthquake, in the figure 40 we can see the movement

along the time respect to earthquake, in North component we can see little change along the

time south direction, and in the East component significative change after earthquake south

direction, but this points are some scattering along the time, in the horizontal component the

variability is rounding 3 cm into 14 days processed.

Figure 40 SM02 station daily North, East and Up direction position

In the table 21, we can see the coordinate day per day, processed in static mode, the red

146 doy represent the earthquake day, after that they change some centimeters as we can see

in the figure 40 and table in mention. The coordinate is in ENU considering the first day as

zero, the average coordinate before earthquake was 0.80 cm east and 0.64 north, after

earthquake changed to 2.03 west and 0.07 north, in vertical component we can see constant
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behavior.

Table 21 SM02 station daily coordinate towards the east north and up direction (cm)

Also, we can see the displacement occurred after earthquake, had 2.83 cm displacement

west component and 0.57 cm to the south, rounding 1 cm in this last component, in vertical

Doy E N U

139 0.00 0.00 0.00

140 -1.02 1.01 0.45

141 0.38 0.80 -0.96

142 3.57 0.08 2.15

143 0.34 0.79 2.06

144 1.74 0.60 0.92

145 0.59 1.17 1.37

146 -2.73 0.40 -0.11

147 -2.63 0.15 1.06

148 0.26 -0.24 1.16

149 NaN NaN NaN

150 -2.74 0.35 -0.19

151 -2.68 0.59 0.53

152 -2.79 -0.22 0.08

153 -1.58 -0.21 0.86

Average E Average N Average U

BE: 0.80 0.64 0.86

AE: -2.03 0.07 0.58

∆: -2.83 -0.57 -0.27
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component 0.27 cm down.

5.3.14 UC01 station

UC01 station is 316 Km from epicenter earthquake, and this station is little same to

LB01 in radial distance from earthquake, in the figure 41 we can see the movement along the

time respect to earthquake, in North component we can see significative change along the

time, and in the East component like constant change after earthquake, in the horizontal

component the variability is rounding 5 cm into 14 days processed.

Figure 41 UC01 station daily North, East and Up direction position

In the table 22, we can see the coordinate day per day, processed in static mode, the red

146 doy represent the earthquake day, after that they change some centimeters as we can see

in the figure 41 and table in mention. The coordinate is in ENU considering the first day as

zero, the average coordinate before earthquake was 0.05 cm east and 0.45 north, after

earthquake changed to 0.39 east and 2.61 north, in vertical component not much difference

such as we can see in the table in mention.
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Table 22 UC01 station daily coordinate towards the east north and up direction (cm)

Also, we can see the displacement occurred after earthquake, had 0.35 cm displacement

east component and 2.16 cm to the north, rounding 2 cm in this last component, in vertical

Doy E N U

139 0.00 0.00 0.00

140 -0.71 -0.13 0.45

141 0.51 0.64 -0.77

142 -1.02 0.73 3.06

143 0.13 1.00 2.90

144 1.48 0.20 3.50

145 -0.06 0.73 2.74

146 -0.52 1.48 1.57

147 0.83 2.23 0.66

148 -0.20 2.35 -1.29

149 1.40 3.01 2.65

150 -1.69 2.42 -0.81

151 -0.37 2.82 -0.29

152 -0.02 1.63 -0.03

153 2.81 3.84 -4.85

Average E Average N Average U

BE: 0.05 0.45 1.70

AE: 0.39 2.61 -0.57

∆: 0.35 2.16 -2.27
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component 2.27 cm down.

5.4 Average sum of carriers and pseudoranges

The advantages of combining both carrier and code measurements by this method will

allow real-time calculations without the required convergence of the standard GPS techniques

that may take several minutes to settle with similar precision.

In next table can show the average sum of carriers and pseudoranges of data processing

Table 23 Average Sum (LC and PC SIGMA)

DAY LC (mm) PC (mm)

139 8.882 1085.779

140 9.452 1084.510

141 8.858 1088.059

142 9.266 1086.857

143 10.024 1083.602

144 9.831 1095.415

145 9.707 1096.564

146 8.511 1100.031

147 8.717 1098.966

148 9.612 1088.982

149 10.228 1101.433

150 9.227 1087.958

151 9.427 1103.201

152 9.679 1070.083

153 10.844 1084.070
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Conclusion
The calculated results processed in PANDA software can us show the position behavior

for 14 GNSS station for a long one week before and after earthquake 8 Mw magnitude; data

processed precision is high accuracy into 10mm, each GNSS station have a different

magnitude and direction in displacement surrounding earthquake, the most GNSS stations

have a displacement to direction south west, these stations represent the 65% to a same

direction, the other stations present little movements and another directions out to the zone.

The GNSS station with more displacement is the AM01 with 5.27 cm to the west and

1.15 cm to the south, the AM05 with 4.2 cm to the west and 0.95 cm to the south, the CJ02

with 3.64 cm to the west and 0.68 cm to the south, the other stations had a little movement

respect the average position before earthquake. In another hand the GNSS stations such have

a little displacement was HC03 with 0.73 cm west and 0.17 cm south and the LR01 with 0.5

cm to the east and 0.84 to the north.

In this research the conclusion is the high accuracy data processing can show us good

results for show the behavior and displacements in GNSS points, very important to know the

difference of displacements and using this information’s por geodesy and topography works,

for high precision engineering jobs.
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