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Abstract 

Ampuero Suárez, Miguel Ángel; Mota de Menezes, Ivan Fabio (Advisor); 

Pereira, Anderson (Co-Advisor). Topology optimization for eigenvalue 

problems using polygonal finite elements. Rio de Janeiro, 2016. 91p. 

MSc. Dissertation - Departamento de Engenharia Mecânica, Pontifícia 

Universidade Católica do Rio de Janeiro. 

In this work, we present some applications of topology optimization for 

eigenvalue problems where the main goal is to maximize a specified eigenvalue, 

such as a natural frequency or a linearized buckling load using polygonal finite 

elements in arbitrary two-dimensional domains. Topology optimization has 

commonly been used to minimize the compliance of structures subjected to 

volume constraints. The idea is to distribute a certain amount of material in a 

given design domain subjected to a set of loads and boundary conditions such that 

to maximize its stiffness. In this work, the objective is to obtain the optimal 

material distribution in order to maximize the fundamental natural frequency (e.g. 

to keep it away from an external excitation frequency) or to maximize the lowest 

critical buckling load (e.g. to ensure a higher level of stability of the structures). 

We employ unstructured polygonal meshes constructed using Voronoi 

tessellations for the solution of the structural topology optimization problems. The 

design variables, i.e. material densities, used in the optimization scheme, are 

associated with each polygonal element in the mesh. We present several topology 

optimization examples for both eigenfrequency and buckling problems in order to 

demonstrate the functionality and applicability of the proposed methodology. 

. 

  

Keywords 

Topology optimization; natural frequencies; linearized buckling; eigenvalue 

problem; polygonal finite elements.  
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Resumo 

Ampuero Suárez, Miguel Ángel; Mota de Menezes, Ivan Fabio (orientador); 

Pereira, Anderson (coorientador).  Otimização topológica para problemas 

de autovalor usando elementos finitos poligonais. Rio de Janeiro, 2016. 

91p. Dissertação de Mestrado - Departamento de Engenharia Mecânica, 

Pontifícia Universidade Católica do Rio de Janeiro. 

Neste trabalho, são apresentadas algumas aplicações da otimização 

topológica para problemas de autovalor onde o principal objetivo é maximizar um 

determinado autovalor, como por exemplo uma frequência natural de vibração ou 

uma carga crítica linearizada, usando elementos finitos poligonais em domínios 

bidimensionais arbitrários. A otimização topológica tem sido comumente utilizada 

para minimizar a flexibilidade de estruturas sujeitas a restrições de volume. A 

ideia desta técnica é distribuir uma certa quantidade de material em uma estrutura, 

sujeita a carregamentos e condições de contorno, visando maximizar a sua rigidez. 

Neste trabalho, o objetivo é obter uma distribuição ótima de material de maneira a 

maximizar uma determinada frequência natural (para mantê-la afastada da 

frequência de excitação externa, por exemplo) ou maximizar a menor carga crítica 

linearizada (para garantir um nível mais elevado de estabilidade da estrutura). 

Malhas poligonais construídas usando diagramas de Voronoi são empregadas na 

solução do problema de otimização topológica. As variáveis de projeto, i.e. as 

densidades do material, utilizadas no processo de otimização, são associadas a 

cada elemento poligonal da malha. Vários exemplos de otimização topológica, 

tanto para problemas de frequências naturais de vibração quanto para cargas 

críticas linearizadas, são apresentados para demonstrar a funcionalidade e a 

aplicabilidade da metodologia proposta. 

 

Palavras-chave 

Otimização topológica; frequências naturais de vibração; carga crítica 

linearizada; problema de autovalor; elementos finitos poligonais. 
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1.  
Introduction 

1.1 
Motivation 

Structural optimization problems can be classified into three types: sizing, 

shape, and topology optimization [1]. 

For sizing optimization, the shape of the structure is known, and the 

objective is to optimize the structure by adjusting the sizes of its components. 

Here, the design variables are the sizes of the structural elements, e.g., the 

diameters of the bars or the thicknesses of a metal sheet. Figure 1.1(a) illustrates 

an example of size optimization where the diameter of the bars are the design 

variables.  

For shape optimization, the design variables are the external contours of 

the domain and/or the shapes of internal pre-existing holes, as shown in Figure 

1.1(b). 

 

 

Figure 1.1: Different types of structural optimization. (a) Sizing optimization, 

(b) Shape optimization, and (c) Topology optimization. [2],[3]. 
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Topology optimization is employed to find the optimum distribution of 

material in a given domain such that it minimizes specific performance measures, 

and is subjected to a volume constraint, as illustrated in Figure 1.1(c) [2]. In this 

work, we will focus on topology optimization. 

In general, the structural optimization problem can be written as: 

                         min                                    

                          s.t.  

                                                        ( 1-1 ) 

                  

                                         
       

            

 
where      is the objective function (e.g. compliance, given eigenvalue),       

and       are the equality and inequality constraints of the problem (e.g. stress, 

fatigue, displacements),   is the vector of the design variables (e.g. density of 

each element), and   
  and   

  are the lower and upper bounds of the design 

variables, respectively. 

 

   

Figure 1.2:  (a) Maximizing the overall stiffness of a building with volume 

constraints  (b) Optimal building systems [4]. 

 

For a particular case of compliance minimization, the topology optimization 

problem can be expressed as: 
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                                       s.t.  

                    ∑       

   

 

     ( 1-2 ) 

                          

                  [   ]            

where      is the set of equilibrium equations that arise from the finite element 

formulation for linear elasticity, which relates the stiffness matrix  , nodal 

displacements  , and the applied load vector  . Here, the objective is to minimize 

the compliance of the structure (equivalent to maximize its stiffness), for a certain 

load and boundary conditions, subject to an upper bound    on the final volume of 

the structure, and      is the volume of each element. Figure 1.2 shows some 

examples of compliance minimization. 

The checkerboard patterns problem has its origin in numerical 

approximation, when traditional low order finite elements (e.g. Q4) are used. 

Structured meshes using triangles and quads may lead to configurations that 

enable the formation of checkerboard and one-node connection problems. 

We use unstructured polygonal finite element meshes to avoid 

checkerboard layouts and one-node connections [5].  

Figure 1.3 shows an example, proposed by P. Browne [6], where 

checkerboard patterns appear when topology optimization is used for compliance 

minimization of a cantilever beam using conventional    elements. 

 

Figure 1.3: Checkerboard patterns in a cantilever beam problem using Q4 

elements [6]. 
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Figure 1.4 presents an example of topology optimization for compliance 

minimization using both standard regular quadrilateral elements and polygonal 

elements. Notice that the use of polygonal elements naturally eliminates the 

appearance of checkerboard patterns and one-node connections (see 

Reference [7] for more details.) 

 

Figure 1.4: Topology Optimization for compliance minimization using: 

(a) 2560 Q4 elements  and (b) 2560 polygonal elements ([7]). 

 

Another advantange of polygonal elements is that they provide a great 

flexibility in discretizing complex domain, as shown in Figure 1.5. 

 

 

Figure 1.5:  Polygonal meshes in different domains: (a) Rectangular; 

(b) Horn geometry and (c) Wrench geometry ([8]) 
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The constrained geometry of the discretizations associated with standard 

triangles and quads can cause bias in the orientation of members, leading to 

mesh-dependent (sub-optimal) topology optimization designs [8]. Figure 1.6 

shows that this problem can be easily cincumvented by using polygonal element 

meshes [8]. 

            

Figure 1.6:  Topology optimization applied to the Michell Domain cantilever 

problem; (a) using    elements and (b) using Polygonal Elements ([8]). 

When applied to fluid flow problems (e.g. Stokes flow), polygonal elements 

have shown to be naturally stable as illustrated in Figure 1.7 for a lid-driven cavity 

problem. As expected from the literature, the use of conventional Q4 elements 

leads to checkerboard layouts in the pressure field, (see Figure 1.7(a)). However, 

for polygonal elements, no checkerboard patterns are observed (see Figure 1.7 

(b)). 

       

Figure 1.7: Velocity and pressure fields for a lid-driven cavity problem: (a) using 

   elements and (b) using polygonal elements [9]). 
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Topology optimization can also be extended to other applications such as 

compliant mechanisms and dynamics. Figure 1.8 to 1.10 show some applications 

of topology optimization for structural problems (e.g. bridges, support tanks, 

aviation industry and wing design of airplanes). 

 

 

Figure 1.8: Topology optimization applied to bridges [10] and support tanks [11]. 
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Figure 1.9: Aviation industry; (a) Airbus-Nose fuselage; (b) Airbus-Center 

fuselage and (c) wings tips [12].  
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Figure 1.10: (a) Airbus/Nose and forward Fuselage and (b) Aircraft 

Architecture [12]. 

 

When topology optimization is applied to vibration problems, the idea is to 

design a structure with a reduced amount of material such that its range of 

natural frequencies can be shifted from the exciting external frequency value in 

order to avoid the resonance phenomenon.  

Figure 1.11(a) illustrates a simply supported beam problem where the 

fundamental frequency          has been maximized to           and  

Figure 1.11(b) illustrates a simply arc clamped beam where the initial 

difference between third and second eigenfrequencies                has 

been maximized to                [13].  
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(a) 

 

(b) 

Figure 1.11: Examples of structural dynamic topology optimization [13]. 

 

On the contrary, when topology optimization is used for the design of 

slender structures under compression loads, the idea is to find an optimal 

material distribution in order to increase the lowest critical buckling load. 

The general formulation of the topology optimization theory applied to a 

linearized buckling load problem can be written as: 
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                         s.t.  

∑       
 

     ( 1-3 ) 

                         with  

      

                                         

                  [   ]              

 
where      is the set of finite element equilibrium equations for linear 

elasticity, and               is the eigenvalue problem to find the linearized 

critical load factor min. Here, the objective is to maximize the lowest eigenvalue 

subject to an upper bound    on the final volume of the structure and      is the 

volume of each element [14].  

Because the robustness and efficiency of the topology optimization scheme 

are obtained using gradient methods, it should be noted that the sensitivity 

analysis plays a very important role in the optimization process. 

The level of complexity of sensitivity calculations depends on the type of 

objective function being considered in the topology optimization problem. To 

minimize the compliance and to solve eigenfrequency problems, it is easy to 

perform sensitivity calculations because the quantities involved are explicitly 

dependent on the design variable (e.g., the material densities). However, for the 

linearized buckling problem, it is more difficult to derive the sensitivities because 

this objective function depends explicitly on the displacements, and also it 

depends implicitly on the material densities.  

In this work, we provide a detailed derivation of the sensitivity equations 

that correspond to the three most well-known methods, which are available in the 

literature for topology optimization, and we compare their performances with 

respect to the computational efficiency. 
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1.2 
Previous Work 

The application of topology optimization to eigenvalue problems has 

recently been found in the literature. M. M. Neves et al. [15] investigated an 

approach to introduce critical load control into the topology optimization model. H. 

C. Rodrigues et al. [16] employed nonsmooth analysis tools to derive the required 

optimality conditions for maximizing the buckling load. Bendsøe and Sigmund 

[14] are the first reported paper to consider topology optimization for buckling 

problems by using Solid Isotropic Material with Penalization (SIMP). E. Lund [17] 

also reported the development of topology optimization for maximizing the 

buckling load factor of material composite shell structures by using Discrete 

Material Optimization (DMO). 

P.A. Browne [6] applied the Evolutionary Structural Optimization (ESO) 

method to minimize the volume of the structure subject to compliance and 

buckling constraints. He employed the MMA as the optimizer method and used 

the fast binary descent algorithm. Spurious buckling modes have been discussed 

for compliance problem subjected to volume constraint. He presented different 

ways to overcome this problem. 

S.J.Van den Boom [18] worked with topology optimization for structural 

compliance minimization considering both volume and buckling constraints. She 

developed the adjoint method using Q4 elements calculating the sensitivities of 

the objective and constraint functions, and also employed the MMA method as 

the optimizer. She discussed and showed some strategies to overcome problems 

such as negative buckling loads, mode switching, multiplicity of buckling loads 

and buckling of void elements (spurious buckling modes). 

Quantian L. et al. [19] used a Moving Iso Surface Threshold method 

(MIST), where the lower bound of the eigenvalue was  defined to eliminate 

spurious localized buckling modes. 

Gao X. and Ma H. [20] applied topology optimization for structural 

compliance minimization considering constraints on both volume and buckling 

load factor.  

Kim T. et al. [21] presented a parallel implementation of the topology 

optimization method for large-scale structural eigenvalue problems, where the 

sensitivity analysis and the update of the design variables were performed 
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independently in each subdomain with minimum data communications among the 

subdomains. 

With respect to the application of topology optimization to dynamics, Bratus 

A. S. and Seiranian [22] investigated interesting applications in the optimal design 

of structures to maximize the lowest eigenfrequency by using a self-adjoint 

operator. Seiranian [23] also presented some applications of topology 

optimization for the multiple eigenvalue problem. Z. D. Ma et al. [24] used the 

concept of the mean-eigenvalue to maximize a specified eigenfrequency and the 

gap between eigenfrequencies by using Optimal Material Distribution [25]. Their 

approach was also applied to solve the stiffness maximization problem in forced 

vibration. 

Xie Y. M. and Steven G. P. [26] and Huang X. et al. [27] applied the 

Evolutionary Structural Optimization (ESO) method to a wide range of frequency 

optimization problems, which include maximizing or minimizing a given 

frequency, the gap between two given frequencies, or multiple frequency 

constraint problems. 

N. Olhoff and Du J. [28] and Du J and Olhoff N. [29] also applied topology 

optimization to the design of structures, where the eigenfrequencies are shifted 

from the external excitation frequency value to prevent the resonance problem. 

Yoon G. [30] investigated the same problem considering the geometrically 

nonlinear behavior of the structures. 

N. Olhoff et al. [31] also investigated the optimum design of the band gap 

for beam structures. 

Based on the recent developments reported by Talischi et al. [8] regarding 

the use of polygonal finite elements for topology optimization, F. Evgueni et al. 

[13] presented a multiresolution scheme for topology optimization, which was 

applied to dynamic problems.  
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1.3 
Objective of this Dissertation  

The main objective of this work is to present some applications of topology 

optimization for eigenvalue problems, such as natural frequency or linearized 

buckling load, using polygonal finite elements in arbitrary two-dimensional 

domains.  

The specific objectives are: 

1. To develop a numerical solution for computing the critical buckling load by 

using polygonal finite elements. 

2. To derive the mathematical expressions for the sensitivities of the objective 

and constraint functions with respect to the design variables for both natural 

frequencies and linearized buckling problems by using the well-known 

sensitivity methods, namely, the Finite Difference Method (FDM), Direct 

Differentiation Method (DDM), and Adjoint Method (AM).  

3. To solve the topology optimization problems for representative numerical 

examples, and to compare the obtained solutions with respect to the 

robustness and efficiency of the different sensitivity methods. 

1.4 
Outline of this Dissertation 

The remainder of this work is organized as follows: In Chapter 2, we 

explain how to solve an eigenvalue problem by using the Finite Element Method 

(FEM) with polygonal meshes. In Chapter 3, we show how to compute the 

sensitivity of the eigenvalue with respect to design variables, which is one of the 

most important steps in the optimization process. In the case of the linearized 

buckling problem, we show different methods for computing the sensitivities, and 

compare the solutions with respect to the CPU time. In Chapter 4, we present the 

topology optimization applied to eigenfrequency and buckling problems, and 

define the objective and constraint functions and the optimization algorithm used 

here. Moreover, we discuss several numerical difficulties that arise when 

topology optimization is applied to the eigenvalue problem, such as multiplicity of 

eigenvalues and spurious mode. We also present some strategies to overcome 

these problems. In Chapter 5, we discuss the results obtained using several 

representative numerical examples. Finally, in Chapter 6, we summarize the 

conclusions of this work and present some suggestions for future work. 
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2.  
Structural Eigenproblems 

 

In this chapter, we discuss briefly the basic issues that are related to the 

computational steps for computing the natural frequencies and linearized 

buckling loads of a given structure. The domain is discretized based on the finite 

element method and we present the main matrices and equations associated 

with these problems.  

2.1 
Finite Element Discretization 

The Finite Element Method (FEM) is a powerful numerical technique that is 

employed to solve differential equations that describe the physical behavior of 

structures. It consists of discretizing the domain into small elements (usually 

triangles or quadrilaterals), where for each element, the displacement field   is 

approximated by    as follows: 

      ∑             ̂ 

  

   

  ( 2-1 ) 

where    are the shape functions,  ̂ are the nodal displacements of element  , 

and    is the total number of nodes in this element. 

 The strains can be obtained as: 

         ( 2-2 ) 

where   is a linear operator. 

From Equations (2-1) and (2-2), the strains can be related to the nodal 

displacements as: 

        ̂   ( 2-3 ) 

The product    represents the strain-displacement matrix, also called  , 

and for a specific 2D case, the above-mentioned vectors and matrices can be 

expressed as: 
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  ( 2-4 ) 

 
where    is a submatrix associated with node   of element  . For the plane stress 

case, which is the main focus of this work, the stresses can be written as: 

 
      , ( 2-5 ) 

where 

   
 

    [

   
   

  
   

 

]  ( 2-6 ) 

 

is the material constitutive matrix, and   and   are the Young modulus and 

Poisson ratio, respectively. 

 The element stiffness matrix can be computed using: 

 

  ∫      
  

      ( 2-7 ) 

 

where    denotes the element volume. The quantity   is evaluated by performing 

a numerical integration over volume   . The global stiffness matrix   can be 

obtained by assembling the elementary stiffness matrices. The final system of 

linear equations is given by      , where   is the global load vector and   is 

the unknown global displacement vector. 

2.1.1 
Polygonal Finite Elements 

For polygonal elements, the finite element formulation that we adopted is 

based on the Laplace shape functions and isoparametric transformations 

(Talischi et al. [32]). The shape function evaluated at point   and corresponding 

to node   of a given reference n-gon, is defined as:  
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∑      
 
   

  ( 2-8 ) 

where 

      
               

                        
  ( 2-9 ) 

 
and          is the area of the triangle defined by vertices      , as illustrated in 

Figure 2.1.  

    

Figure 2.1: (a) Triangular areas used to compute shape functions of 

polygonal elements and (b) Triangulation of the reference regular polygonal and 

integration points defined on each triangle. 

 

An isoparametric mapping from regular n-gons (the so-called “parent” 

element) to any convex polygon can be constructed using these shape functions. 

Because the interpolated field varies linearly on the boundary, the resulting 

approximation is conforming. Following the usual approach in the finite element 

community, the shape functions are defined on the parent domain, where the 

weak form integrals are evaluated numerically. The reference n-gon is divided 

into   triangles (by connecting the centroid to the vertices), and well-known 

quadrature rules are used on each triangle (see Talischi et al. [32] for more 

details). 
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2.2 
Natural Frequencies 

Neglecting damping effects, the natural frequencies of a given structure 

depend not only on the stiffness matrix, presented in Section 2.1, but also on the 

mass distribution along its domain.  

The element mass matrix   is given by: 

  ∫   
      

  
     ( 2-10 ) 

where   
  is the element density,   

 is a matrix containing the element shape 

functions defined in Equation (2-8)  and    is the element domain (area). 

The global mass matrix can be obtained by assembling each element mass 

matrix as: 

  ∑  

   

   

   ( 2-11 ) 

where     is the total number of elements in the mesh.  

 

The corresponding eigenproblem, which is associated with the natural 

frequencies of the structure, is given by: 

 
             ( 2-12 ) 

where   represents the eigenvalues, i.e., the square of the structural natural 

frequencies       and for each eigenvalue,   corresponds to a shape mode 

(for more details, see references R.Cook [33] and K.Bathe [34]). 

2.3 
Structural Linear Buckling Analysis 

In this section, we present a general overview of the main steps that are 

required to solve the linearized buckling analysis problem. 

First, we used the global stiffness matrix   and the applied load vector   to 

compute the global displacement vector  , as: 

     ( 2-13 ) 

Next, we obtain the element displacement vector    from global vector  . 
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The element stresses   can be determined using the element 

displacements   , the material constitutive matrix   , and the strain-displacement 

matrix    as: 

 

       ;     where (for plane stress):        {         } 
   ( 2-14 ) 

 
Once the stresses are calculated, the element geometric (or stress) 

stiffness matrix can be obtained as: 

 

   ∫      
  

      ( 2-15 ) 

 
where   is an element matrix that contains shape functions and their derivatives, 

and   is a matrix that contains stress components, i.e.: 

       

[
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]   ( 2-16 ) 

 
Now, for a discretized finite element mesh, the global geometric stiffness 

matrix can be calculated as: 

   ∑  
 

   

   

   ( 2-17 ) 

Finally, the eigenproblem corresponding to the linearized buckling problem 

can be established as: 

              ( 2-18 ) 

where the eigenvalues   correspond to the critical buckling loads, and for each 

eigenvalue,   corresponds to a shape buckling mode (see Bendsøe et al., [14] for 

more details). 
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2.4 
Numerical Examples 

The first example consists of a 2D beam structure for which we compute 

the first four natural eigenfrequencies and the respective shape modes by using 

the expressions presented in the previous sections. The domain is discretized 

with polygonal finite elements. The geometry and boundary conditions are 

illustrated in Figure 2.2(a). The dimensions and material properties are:      , 

     ,    ,     ,     and     (thickness). Table 2.1 shows the four 

eigenfrequencies that we obtained using different discretizations, together with 

the corresponding analytical solutions. 

For the analytical solution we used reference by D.Inman [35] where the 

eigenfrequencies    for the Euler-Beurnoulli beam theory are given by: 

     
 √

  

  
               ( 2-19 ) 

Considering the campled-clamped boundary condition, we arise at the 

following equation: 

 

                        ( 2-20 ) 

 
where, the solution is given by: 

 

    
       

 
          ( 2-21 ) 

 

Table 2.1: First four eigenfrequencies for different discretizations. 
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Figure 2.2: (a) Geometry and boundary conditions – (using 2,000 polygonal finite 

elements mesh) and (b) first four mode shapes. 
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The second example consists of a slender column subjected to a 

compressive distributed load  . The geometry, loads and boundary conditions 

are illustrated in Figure 2.3(a). The dimensions and material properties 

are:           ,     ,     ,    ,     , and     (thickness). Table 2.2 

shows our numerical solutions of the first linearized buckling loads using different 

discretizations with polygonal meshes              
  and the corresponding 

analytical solution               
  using the Euler-Bernoulli column theory. 

The expression for the critical buckling load of columns using Euler-

Beurnoulli theory is given by [36],[37]: 

             
 

      

                  ( 2-22 ) 

where, for slender columns, we should consider: 

    ( 2-23 ) 

  

Table 2.2: Linearized critical buckling load. 
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Figure 2.3: (a) Geometry, loading and boundary conditions – (using 1,000 

polygonal finite elements mesh); and (b) first four buckling modes. 
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3.  
Structural Sensitivity Analysis 

 

In this chapter, we derive the sensitivities of the natural frequency of the 

vibration and buckling load with respect to the design variables. As shown in 

Sections 2.2 and 2.3 of Chapter 2, these response measures are eigenvalues of 

a generalized eigenvalue problem. 

 

3.1 
Eigenvalue Sensitivity Analysis 

Consider the formulation for the natural frequency or buckling (      for 

buckling problems) described by the following eigenvalue problem: 

 
           ( 3-1 ) 

 

Differentiating with respect to the design variable  , we have: 

 

(
  

  
 

  

  
   

  

  
)        

  

  
    ( 3-2 ) 

 

By multiplying the left side by   , we obtain: 

 

  (
  

  
 

  

  
   

  

  
)          

  

  
    ( 3-3 ) 

 

Considering that the term          must vanish from Equation (3-1) and 

rearranging, we obtain: 

 

  

  
 

  (
  

  
  

  

  
) 

    
     ( 3-4 ) 

 
Note that for the buckling load, the global geometric stiffness matrix also 

depends on  , which is implicitly dependent on the design  . The sensitivity of    

can thus be expressed as: 

 
   

  
 

   

  
|
       

  
   

  

  

  
  ( 3-5 ) 
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Replacing       in Equation (3-4) and using Equation (3-5), we have 

 

  

  
  

  *
  

  
  (

   

  
|
       

  
   

  

  

  
)+  

     
   

 

 ( 3-6 ) 

By rearranging Equation (3-6), we get: 

 

  

  
  

  *
  

  
  (

   

  
|
       

)+         

  

  

  
 

     
 ( 3-7 ) 

 
Using 

 

   

  

  

  
 ∑

   

   

   

  
 

 

   

 ( 3-8 ) 

 
 
where   is the number of degrees of freedom (DOF) of the structure, and  

        

   
 ,  

we can write 

 

  

  
  

  (
  

  
  

   

  
|
       

)       

  

     
  ( 3-9 ) 

 

Note that, for the case of the natural frequencies, we have     and           

      and the Equation (3-4) is restored. 

The evaluation of Equation (3-9) can be done using either the Direct 

Differentiation Method (DDM) or the Adjoint Method (AM). The former directly 

solves 
  

  
 and then computes Equation (3-9). In order to avoid the computation of  

  

  
, the latter method constructs an adjoint problem that solves for the adjoint 

variable. These methods will be discussed in subsequent sections. 
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3.1.1 
Direct Differentiation Method (DDM) 

From the static equilibrium problem,     , we derive both members with 

respect to the design variable: 

 
  

  
 

  

  
   

  

  
 ( 3-10 ) 

 
Considering that the force vector   does not depend on the design variable 

 , 
  

  
 must be zero. By replacing it in Equation (3-10) and isolating the term 

  

  
, we 

have: 

 
  

  
     

  

  
  ( 3-11 ) 

 
These solutions were obtained in an efficient manner because the stiffness 

matrix   was previously factored during the structural analysis step. Using 
  

  
 

from Equation (3-11), 
  

  
 may now be directly calculated from Equation (3-9). 

However, in topology optimization, numerous design variables are required, 

making this approach impractical. As shown in the next section, we can obtain a 

very simple and efficient sensitivity expression by using the adjoint method. 

3.1.2 
Adjoint Method (AM) 

Using Equation (3-11) in Equation (3-9), we obtain:  

 

  

  
  

  (
  

  
  

   

  
|
       

)          

  
 

     
  ( 3-12 ) 

 

The main idea here is to directly compute the term       by defining it as 

the adjoint variable  : 

 
      ( 3-13 ) 

Finally, by substituting Equation (3-13) in Equation (3-12), we obtain the 

general formulation for the eigenvalue-buckling sensitivity as: 
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  (
  

  
  

   

  
|
       

)       

  
 

     
  ( 3-14 ) 

 
Note that the computation of   in Equation (3-13) is independent of the 

design variable  , which makes this approach very attractive for topology 

optimization. 

 

3.2 
Derivative of Elastic Stiffness and Mass Matrices  

The explicit expression of the elastic stiffness matrix   is presented in 

Equation (2-7). Assuming a linear dependence of    on   , as expressed by     

       
 , we can write the stiffness matrix as follows: 

 

  ∑∫     
   

     
  

   

   

 

 

( 3-15 ) 

where   
  is the constitutive matrix of the solid material. The derivative of   with 

respect to the design variable    is carried out on the element level as follows: 

  

   
 ∑∫     

   
     

  

 ∑∫      
   

     
  

   

   

   

   

 

 

( 3-16 ) 

and  

  

   
 ∫   

   
      

  

  
  

 

( 3-17 ) 

where   
  is the local stiffness matrix of the solid phase. 

Similarly, to determine the elastic stiffness matrix, the derivative of the 

mass matrix can be given by: 

  

   
 ∫   

   
     

  

   
  

( 3-18 ) 

 

where    and   
  are the density and local mass matrix of the solid phase, 

respectively. 

DBD
PUC-Rio - Certificação Digital Nº 1322128/CA



  45 

3.3 
Derivative of Geometric Stiffness Matrix  

The geometric stiffness matrix is implicitly dependent on the design variable 

  through the displacement vector  . From Equation (3-5) and Equation (3-8) the 

sensitivity of    can thus be expressed as: 

   

  
 

   

  
|
       

  ∑
   

   

   

  

 

   

  ( 3-19 ) 

 
The first term of Equation (3-19) represents the explicit dependence on the 

design, while the second term shows the implicit dependence through the 

displacement     . The explicit part is obtained as: 

 

   

   
|
       

 ∑∫   
 
   

   
|
       

     
 

   

   

  ( 3-20 ) 

 

From Equation (2-16),    is the elemental stress matrix. For the case of 

plane stress, we have: 

 

   [

     
     

  
  

  
  

     
     

]  ( 3-21 ) 

 

Deriving the stress matrix    with respect to the design variable   , and by 

considering the displacement   constant, we obtain:  
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  ( 3-22 ) 

The elemental stress components can be computed as: 
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   {

  

  

   
}      

      ( 3-23 ) 

 
Deriving Equation (3-23) with respect to     
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      ( 3-24 ) 

and 
   

   
|
       

   
        

  ( 3-25 ) 

 
Finally, we obtain the explicit part of the derivative of the geometric stiffness 

as: 
 

   

   
|
       

 ∫   
   |      

      
 

  ( 3-26 ) 

 

Now, for the implicit part, we have: 

 

   

   
 ∑∫   

 
   

   
     

 

   

   

  ( 3-27 ) 

 

Deriving the stress matrix   , we obtain: 

   

   
 

[
 
 
 
 
 
 
 
 
 
   

   

    

   

    

   

   

   

   

   

    

   

    

   

   

   ]
 
 
 
 
 
 
 
 
 

  ( 3-28 ) 

The derivative of the elemental stress components can be computed as: 

DBD
PUC-Rio - Certificação Digital Nº 1322128/CA



  47 

   

   

 

{
  
 

  
 

   

   

   

   

    

   }
  
 

  
 

     
   

   

   

  ( 3-29 ) 

 

Note that the term 
   

   
 is computed for each DOF of the structure. For the 

 th DOF, we have: 

 

   

   
 

{
 
 

 
 
 
 
 
 
 }
 
 

 
 

     ( 3-30 ) 

 

The calculation of the derivatives of the geometric stiffness matrix is the 

main computational cost associated with buckling topology optimization. For each 

variable           , we must compute Equation (3-14). This equation requires 

Equations (3-8) and (3-29), which contain a sum over           and                             

          , significantly increasing the computational cost. To reduce the 

computational cost, we computed and stored the node-element adjacency list to 

avoid any looping through the elements that do not have the DOF  . 

3.4 
Finite Difference Method (FDM)  

A simple technique that is employed to compute the sensitivity with respect 

to the design variable is an approximation of the finite difference method. This 

technique is computationally expensive, but easy to implement, and is therefore 

used primarily for comparison with other methods. 

A simple approximation for the derivative of a function     ,  
  

   
  , is the first 

order finite difference 
  

   
, given by: 

 

  

   
 

 (      )      

  
     ( 3-31 ) 

where: 
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{
 
 

 
 
 
 
 
 
 }
 
 

 
 

    ( 3-32 ) 

 

Here,    is a small numerical perturbation, generally defined by: 

 
         ( 3-33 ) 

where the parameter   is usually chosen in the range [         ] such that the 

truncation error is reduced. 

  

To illustrate the use of the FDM, consider a slender column, subjected to a 

compression load, as shown in Figure 3.1(a). The idea is to compute the 

eigenvalue buckling sensitivity with respect to the design variables    in each 

element. The geometry, loading and boundary conditions are also given in Figure 

3.1(a), and the other numerical values are:    ,      ,      ,     ,     

(thickness), and     . 

For our problem, if     and    , from the Equation (3.32), we have: 

 

  

   
 

 (       )      

  
   ( 3-34 ) 

 
where: 

        ( 3-35 ) 

 
 Figure 3.1(b) and (c) show the finite element mesh using 2,000 polygonal 

elements and the corresponding first buckling mode, respectively.  

Figure 3.2 illustrates a detail of the upper left corner of the column, where 

one concentrated load is applied. Figure 3.3 shows a comparison between the 

FDM and DDM methods, considering different values of   (see Equation (3-36)), 

for computing the sensitivity       ⁄  with respect to the polygonal element 

shown in Figure 3.2. Finally, several contour plots of the sensitivities obtained by 

the FDM, considering values of   in the range [          ], are illustrated in 

Figure 3.3. Note that for the range [          ]) we can get incorrect results, 
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which means that we need to adjust this parameter. Figure 3.3 shows that in the 

range [         ]) the solution is correct comparing to the DDM. 

               

Figure 3.1: (a) Geometry, loading and boundary conditions, (b) finite element 

mesh using 2,000 polygonal elements, and (c) first buckling mode. 

 

 

         Figure 3.2: Detail shown in Figure 3.1(b). 
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     Figure 3.3: Relative Error (%). 

       

             Figure 3.4 Contour plots of the eigenvalue buckling sensitivity for 

different values of the perturbation. 

DBD
PUC-Rio - Certificação Digital Nº 1322128/CA



  51 

3.5 
CPU Time Comparison  

In this Section we use a representative example to compute the eigenvalue 

buckling sensitivities using the FDM, DDM, and AM methods. The results 

obtained here are compared with respect to the computational time. 

The problem consists of a slender column subjected to an uniform 

compression. The geometry, loading and boundary conditions are illustrated in 

Figure 3.5(a), using quadrilateral elements, and Figure 3.7(a), using polygonal 

elements. The other numerical values used are:        ,       ,    , 

   ,     (thickness), and     . The eigenvalue buckling sensitivities, with 

respect to the design variable    in each element, are computed. 

For the simulations, we used an Intel Core i7-4930K CPU @ 3.40 GHz, 

with 64 GB of RAM, and the Microsoft Windows 7 64-bit operating system. 

In our tests, we computed the sensitivities for different levels of mesh 

refinement. The results are shown in Figure 3.6 and Figure 3.8, for quads and 

polygons, respectively. Notice that the computational time with respect to the size 

of the problem grows quadratically, for the DDM, and linearly, for the AM. Finally, 

a comparison between the FDM, DDM and AM methods is shown in Figure 3.9, 

where we can observe that the computational time related to the FDM grows 

exponentially with respect to the size of the problem. 
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Figure 3.5: (a) Geometry, loading and boundary conditions for a column domain, 

(b) Discretization using 1,200 quad meshes; (c) First buckling mode and (d) 

contour plot of eigenvalue sensitivities. 

 

Figure 3.6: Computational time for the DDM and AM to compute the 

eigenvalue sensitivities, using Q4 (quadrilateral elements). 
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 Figure 3.7: (a) Geometry, loading and boundary conditions for a column 

domain, (b) Discretization using 1,000 polygonal elements; (c) First buckling 

mode, and (d) Contour plot of eigenvalue sensitivities.   

 

Figure 3.8: Computational time for the DDM and AM to compute the 

eigenvalue sensitivities, using polygonal elements. 
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Figure 3.9: Computational time for the FDM, DDM and AM to compute the 

eigenvalue sensitivities using polygonal elements. 
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4.  
Eigenvalue Topology Optimization 

 

In this Chapter, we discuss the eigenvalue topology optimization problem. In 

Section 4.1 we show the problem of maximization of the first natural frequency, 

and in Section 4.2 we describe the problem of maximization of the first buckling 

load. 

4.1.  
Natural Frequency Optimization 

 The optimization problem corresponding to the eigenfrequency 

maximization can be expressed as the following         problem: 

 
 

   
    

    {        
          

{  
 }} 

  

s.t:  

     ∑   
   

   
       

 ( 4-1 ) 

with:  

      
                            

  and  

                            

 

Here,    is the     eigenfrequency,    is the corresponding eigenvector, and 

  and   are, respectively, the symmetric and positive definite stiffness and mass 

matrices associated to the finite element method. The eigenvalues, which are 

real and positive numbers, can be ordered as:   
    

           

  and the 

corresponding eigenvectors are  -orthonormalized,      is the volume of each 

element and    is the upper bound on the final volume of the structure, defined by 

the user. 
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4.2 
Buckling Optimization 

For the buckling optimization problem the idea is to maximize the minimum 

critical buckling load  . Considering only linear behavior, i.e., for small 

displacements, the objective is to maximize the minimum critical load      .   

The optimization problem can be expressed as: 

 

 

   
    

    {        
          

,      -} 
 

s.t.:  

    ∑   
   

   
       

  ( 4-2 ) 

with:  

      

                                    

and  

                            

 

Here, the eigenvalue    corresponds to the  
  

 critical buckling load,    is 

the corresponding eigenvector (or buckling mode shape), and   and    are, 

respectively,  the symmetric and positive definite elastic and geometric (or stress) 

stiffness matrices associated to the finite element method (M. P. Bendsøe et al. 

[14]). The eigenvalues, which are real and positive numbers, can be ordered as: 

               
 and the corresponding eigenvectors are   -

orthonormalized,      is the volume of each element and    is the upper bound 

on the final volume, defined by the user. 
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4.3 
Formulation: Objective and Volume Constraint Functions 

The  SIMP  (Solid Isotropic Material with Penalization) model proposed by 

M. P. Bendsøe et al. [14], [38] is a simple and effective material model that is 

widely used to achieve optimum topology designs. The model is usually applied 

together with a filter technique, in order to prevent checkerboard formation and a 

dependency of optimum topology solutions on the finite element mesh 

refinement. 

From the article by F. Evqueni et al. [39], the density of the element    is 

computed based on the weighted average of the nearby design variable as: 

 

   
∑  ̅    

        

∑             

 ( 4-3 ) 

   

 

Figure 4.1: Projection scheme from the design variables to the element 

density. 

Here,    is the sub-domain corresponding to the density element,    is the 

position of the centroid of the design variable  ̅. The weight function for this linear 

approach can be defined as: 
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         {

         

   
            

                                 

 ( 4-4 ) 

where     is the distance between the centroid of the density element   and the 

design variable  ̅  and      is the length scale of the filter defined by the user 

(See Figure 4.1). The sensitivities of the element density with respect to the 

design variables are obtained as: 

 

   

  ̅
 

        

∑             

  ( 4-5 ) 

 

The projection operator is written in matrix form   as: 

      ( 4-6 ) 

 

Then, we define vectors   ,     and    as material interpolation 

functions, i.e.: 

          ( 4-7 ) 

 
           ( 4-8 ) 

 
           ( 4-9 ) 

 
          ( 4-10 ) 

 
where in the case of SIMP, we have: 

 

 ̅            ̅   ( 4-11 ) 

 

 ̅      ̅   ( 4-12 ) 

 

 ̅      ̅   ( 4-13 ) 
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Here,  ,  , and   are the respective penalization factors and   is the Ersatz 

number. Thus, the corresponding elastic, geometric, and mass matrices are 

given as: 

 

  ∑        
    

   ,  ( 4-14 ) 

 

   ∑         
    

   , and  ( 4-15 ) 

 

  ∑        
    

   ,  ( 4-16 ) 

 

 

4.4. 
Optimization Algorithm 

The optimization algorithm is responsible for updating the design variables 

toward the optimal solution. Several algorithms, available in the literature, can be 

used for solving density-based topology optimization problems. Two of the most 

well known algorithms for this class of problems are the Optimality Criteria (OC)  

(see, for example, D. Gunwant and A. Misra [40]) and the Method of Moving 

Asymptotes (MMA), (developed by Svanberg K. [41]). 

In this study, we solved the buckling topology optimization problem using 

the OC method. This method is very simple and can applied in optimization 

problems where there is only one constraint function (in this case, an upper 

bound on the final volume of the structure). 

 

4.4.1 
Optimality Criteria 

The basic idea of this method consists of replacing the objective and 

constraint functions by suitable approximations in the neighborhood of the current 

design point. In other words, we solve the following approximate problem in each 

iteration: 

   
       

       ( 4-17 ) 
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Here,      is an approximation to the objective function, and    and    

specify the lower and upper bounds, respectively, for the search region where the 

approximation is valid. Denoting   as the admissible move limit and    as the 

design at the current iteration, we get: 

 

  
      (  

      )            ( 4-18 ) 

  
         

                   ( 4-19 ) 

where   and     specify the lower and upper bounds of the density. 

Note that the function   can be written as: 

 
                  ( 4-20 ) 

 
where   and   are the objective and constraint functions, respectively, which 

were obtained from the first order Taylor expansion. 

To obtain the approximate function     , the first term      is linearized in 

the exponential intermediate variables [42]: 

 

.
     

   
/

 

  ( 4-21 ) 

 

with    , the current value of the design variable     , the first-order 

Taylor expansion in these intermediate variables yields: 

 

              ∑
 

 
(  

   )

 

   

[(
     

  
   

)

 

  ]
  

   
|
    

  ( 4-22 ) 

 
The constraint function is approximated linearly in the design variables: 
 

              ∑      
  

  

   
|
    

 

   

  ( 4-23 ) 

 
The condition of optimality provides the relationship between the Lagrange 

multiplier   and each design variable   : 
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              ( 4-24 ) 

 
The value of the Lagrange multiplier   is obtained by solving the dual 

problem using a bi-section method. 

By substituting Equation (4-22) and Equation (4-23) into Equation (4-24), 

we can obtain an explicit expression for   : 

 

.
     

  
   

/

   

 

 
  

   
|
    

  
  

   
|
    

     ( 4-25 ) 

 

  
      

 

   (  
   )           ( 4-26 ) 

 

where   
  is the candidate for the new iteration. 

Using the convexity of     , the minimizer      is given by: 

 

  
    {

  
    

    
 

  
    

    
 

       
           

           ( 4-27 ) 

or by: 

 

          
        ( 4-28 ) 

          
        ( 4-29 ) 

  
                        

    
          

         ( 4-30 ) 

 
The update scheme consisting of Equation (4-30) is commonly known as 

the OC method, and the quantity   
 

   
 is sometimes referred to as the damping 

coefficient. For the so-called reciprocal approximation,     , and thus   
 

 
  

(for more details, see Talischi et al., [32], [39].) 
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4.5.  
Spurious Localized Buckling Mode 

During the numerical optimization process, a common problem, known as 

spurious mode or local mode, is often observed. This is because of the low 

density of some elements in the mesh (void areas).  

According to Browne [6], Pedersen [43] and Neves et al. [15], a low-density 

element is defined as one where the density is below a certain threshold, which is 

usually taken as 10% of the initial density value. As an example, consider the 

problem studied by Browne P. [6], which is shown in Figure 4.2. A square domain 

(        ) discretized with         quadrilateral elements is subjected to a 

vertical concentrated load (     ) pointing downwards, which is applied at the 

top of the design domain; the base is considered fixed. The material properties 

are           and      . The Ersatz parameter is taken as         , and 

we used a filter with a radius of         . The objective is to minimize the 

compliance of the structure with a constraint on the volume corresponding to 20% 

of the initial volume, and a penalization factor     is applied on the stiffness 

matrix. This problem is solved here using the SIMP model together with the OC 

optimizer. 

   

Figure 4.2: (a) Geometry, loading and boundary conditions. (b) Finite element 

mesh using 10×10 quadrilateral elements. 
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Figure 4.3 and Figure 4.4 show the material distribution inside the domain 

after iterations 1, 7 and 10, respectively, of the topology optimization process for 

compliance minimization. For each material distribution, we computed the first 

linearized buckling load and corresponding buckling mode. 

      

Figure 4.3: (a) Initial distribution of material and corresponding mode shape; (b) 

Distribution of material and corresponding mode shape after 1 iteration. 

 Figure 4.3(a) shows the first ocurrence of spurious buckling modes. The 

elements in the top corners are the first to get to a low value of density and we 

can see that in these areas the buckling mode is localized (see Figure 4.3 (b)). 

This is the first time that the element density drops below 0.1, which is the critical 

value pointed out by Pedersen [43] and Neves et al. [15]. 

     

Figure 4.4: Distribution of material and corresponding mode shape; (a) after 7 

iterations; (b) after 10 iterations. 
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Figure 4.5: (a) Final distribution of material. (b) Mode shape corresponding to the 

19th smallest positive eigenvalue. 

The mode shape shown in Figure 4.4(b) corresponds to the smallest 

positive eigenvalue at the final solution of the optimization problem. However, the 

buckling mode associated with the smallest positive eigenvalue may not 

correspond to the desired mode shape, as illustrated in Figure 4.5(b), where the 

desired mode shape is associated with the 19th smallest positive eigenvalue. 

To avoid this problem, we followed the suggestion proposed by Bendsøe 

and Sigmund [14], and used by Boom, S. [18], which consists of using different 

values of the penalization factor for the elastic ( ) and geometric (  ) stiffness 

matrices. The basic idea here is to penalize    because low-density elements do 

not contribute to the geometric stiffness matrix. According to Boom, S. [18], 

another advantage of this strategy is that it makes the geometric stiffness matrix 

a continuous and differentiable function of the element densities, which is very 

important when gradient-based optimization methods are used. Let   and   be 

the penalization factors for   and   , respectively. The buckling of void elements 

is prevented when    . 

To illustrate this strategy, consider the example shown in Figure 4.6. A 

square domain (       ) is discretized with     quadrilateral elements, 

subjected to a vertical load        pointing downwards, and applied at the top 

of the design domain; the base is considered fixed. The material properties are: 

         and      . The Ersatz parameter is taken as         , and we 

used a filter with radius           The objective is to maximize the eigenvalue 
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of the structure with a constraint on the volume corresponding to     of the initial 

volume. Variable values of   are used to penalize the elastic stiffness matrix and 

variable values of  , for the geometric stiffness matrix. This problem is solved 

here using the      model together with the    optimizer. As expected, no 

buckling of the void elements is observed when     as shown in Figure 4.7. 

    

Figure 4.6: (a) Geometry, loading and boundary conditions. (b) Finite element 

mesh using 6×6 quadrilateral elements. 

    

Figure 4.7: First buckling mode for (a)     and (b)    . 

A similar example, illustrated in Figure 4.8, is studied here for the 

eigenfrequency problem. It consists of a square domain (        ) 

discretized with     quadrilateral elements; and supported-supported boundary 

condition. The material properties are:          and      . The Ersatz 
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parameter is taken as          , and we used a filter with radius            

The objective is to maximize the first eigenvalue of the structure with a constraint 

on the volume corresponding to     of the initial volume. Variable values of   

are used to penalize the elastic stiffness matrix and variable values of  , for the 

mass matrix. This problem is solved using the      model together with the    

optimizer. As expected, no buckling of the void elements is observed when    , 

as shown in Figure 4.9. 

 

    

Figure 4.8: (a) Geometry, loading and boundary conditions. (b) Finite element 

mesh using 6×6 quadrilateral elements. 

   

Figure 4.9: First shape mode for (a)     and (b)    . 
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4.6.  
Numerical Implementation 

PolyMesher is a simple and robust MATLAB® code for polygonal mesh 

generation. The main ingredients of PolyMesher are the implicit representation 

of the domain and the use of Centroidal Voronoi diagrams for its discretization. 

The implicit description offer great flexibility to construct a relatively large class of 

domains with algebraic expressions. A discretization of the domain is constructed 

from a Centroidal Voronoi tessellation (CVT) that incorporates an approximation 

to its boundary. This approximation is obtained by including the set of reflections 

of the seeds. Additionally, Lloyd’s method is used to establish a uniform (optimal) 

distribution of seeds and thus a high quality mesh (for more details, see reference 

[7]). Figure 4.10 shows some iterations of the Lloyd’s method.  

 

        

Figure 4.10: Lloyd’s method. (a) Initial random distribution of seeds and 

corresponding Voronoi diagram; (b) First iteration; (c) Distribution of seeds after 

80 iterations. 
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To generate a mesh using Polymesher the user needs to provide the 

following informations: the domain function (e.g. MbbDomain, MichellDomain, 

etc.) maximum number of Lloyd’s iterations (MaxIter), and number of 

polygonal elements (NElem). The command line to call the Polymesher 

function is the following: 

  [Node,Element,Supp,Load]=Polymesher[@Domain,NElem,MaxIter] 

The corresponding output data are: Node, a vector with the coordinates of 

all nodes in the mesh; Element, a cell array containing the connectivity of each 

polygonal element, Supp and Load are vectors containing boundary conditions 

and load values, respectively. (More details about this function can be found in 

the work by Talischi et al. [8]). 

Polytop is an efficient code developed in MATLAB® for structural 

topology optimization that includes a general finite elemens routine based on 

isoparametric polygonal elements. According to the authors [32], the code also 

features a modular structure in which the analysis routine and the optimization 

algorithm are separated from the specific choice of topology optimization 

formulation.  

Within this framework, finite element and sensitivity analysis routines were 

modified, where:  

     FEAnalysis, contain formulations to solve eigenvalue problem. 

     ObjectiveFnc, objective function (e.g. eigenvalue) and ConstraintFnc, 

constraint function (e.g. volume fraction) are used during the sensitivity analysis. 

Note that other formulations can be used and thus the code can be extended, 

developed and modified independently, according to the new type of problem. 

The  variables are updated in the UpdateScheme routine using optimality 

criterion method OC as the optimizer algorithm. More details about the code can 

be found in Reference [32]. 

The main steps required to achieve an optimal topology for a linearized 

critical buckling load problem are illustrated in the flowchart depicted in Figure 

4.11. 
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Figure 4.11:  Flowchart for topology optimization applied to an eigenvalue 

problem. 
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5.  
Results and Discussion 

 

5.1. 
Topology optimization for eigenfrequency problems 

The beams shown in Figure 5.1(a), Figure 5.6(a) and Figure 5.9(a) are 

considered here to maximize their fundamental frequency. The main input 

parameters are:      ,      ,           ,      , and the initial material 

density      . The beam domain is discretized with        polygonal elements, 

and the volume fraction of 50%, which defines the upper bound on the final 

volume (  ) of the structure. The OC algorithm is used as the optimization 

algorithm.  The results obtained here to maximize the fundamental frequency are 

illustrated in Figure 5.1 to Figure 5.8. This example was also studied by J. Du and 

N. Olhoff [29], and their final topology is shown in Figure 5.1(d), Figure 5.6(d) and 

Figure 5.9(d). Three boundary conditions are considered: simply supported; 

clamped–clamped; and clamped–supported. 

5.1.1 
Simply Supported Beam 

Figure 5.1(a) and Figure 5.1(b) show, respectively, a simply supported 

beam and the corresponding polygonal finite element mesh. The final topology 

obtained for maximizing the fundamental eigenfrequency is illustrated in Figure 

5.1(c). We adopted     for penalizing the elastic stiffness matrix and       for 

the mass matrix. Optimal design obtained by J. Du and N. Olhoff  [29] is shown in 

Figure 5.1(d).  
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Figure 5.1: Simply supported beam: (a) Geometry and boundary conditions; 

(b) Polygonal finite element mesh;  (c) Optimal topology obtained in this study (d) 

Optimal topology obtained by [29], when 1st eigenfrequency is maximized. 

Figure 5.2(a) illustrates the convergence of the objective function (i.e. the 

fundamental eigenfrequency) and the next two eigenfrequencies with respect to 

the number of iterations. Figure 5.2(b) shows the results obtained by J. Du and N. 

Olhoff  [29]. 

It is important to mention that, in this example, the multiplicity of 

eigenfrequencies (first and second) can be found because we compute the 

sensitivity of a single eigenvalue. Therefore, when maximizing the first 

eigenvalue, the sensitivity affects only this single eigenvalue and the second and 

third ones may decrease during the optimization process. 

To overcome this problem, we can compute the sensitivity for repeated 

eigenvalues, using a linear combination of eigenvalues (see, for example, the 

work by R. Mosmann  [44] and C. Guilherme [45]). Here, we only compute the 

sensitivity for a single eigenvalue. 
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Figure 5.2: Simply supported beam: (a) Convergence of the first three 

eigenfrequencies (b) Results obtained by [29]. 

The final topologies and the respective mode shapes, for the simply 

supported case, are shown in Figure 5.3. The results obtained here are in good 
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agreement with the ones obtained by J. Du and N. Olhoff [29] and illustrated in 

Figure 5.4. 

 

 

 

 

Figure 5.3: Simply supported beam: First three eigenmodes  

 

 

 

 

Figure 5.4: Simply supported beam: First three eigenmodes obtained by 

[29]. 

 

Finally, Figure 5.5(a) shows the optimal topology obtained when the second 

eigenfrequency is maximized, considering the simply supported case and 
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polygonal finite elements. Figure 5.5(b) shows the final topology obtained by J. 

Du and N. Olhoff [29]. 

 

 

(a) 

 

(b) 

Figure 5.5: Simply supported beam: (a) Optimal topology obtained in this study 

for maximizing the second eigenfrequency (b) Optimal topology obtained by [29]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

DBD
PUC-Rio - Certificação Digital Nº 1322128/CA



  75 

5.1.2  
Clamped-Clamped Beam 

Figure 5.6(a) and Figure 5.6(b) show, respectively, a clamped–clamped 

beam and the corresponding polygonal finite element mesh. The final topology 

obtained for maximizing the fundamental eigenfrequency is illustrated in Figure 

5.6(c). We adopted     for penalizing the elastic stiffness matrix and       for 

the mass matrix. Optimal design obtained by J. Du and N. Olhoff  [29] is shown in 

Figure 5.6(d). 

 

 

Figure 5.6: Clamped-clamped beam: (a) Geometry and boundary 

conditions; (b) Polygonal finite element mesh;  (c) Optimal topology and (d) 

Optimal topology obtained by [29]. 

Figure 5.7(a) illustrates the convergence of the objective function (i.e. the 

the fundamental eigenfrequency) and the next two eigenfrequencies with respect 

to the number of iterations. Figure 5.7(b) shows the results obtained by J. Du and 

N. Olhoff  [29]. 
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Figure 5.7: Clamped-clamped beam: (a) Convergence of the first three 

eigenfrequencies ; (b) Results obtained by [29]. 

Finally, Figure 5.8(a) shows the optimal topology obtained when the second 

eigenfrequency is maximized, considering the clamped-clamped case and 

polygonal finite elements. Figure 5.8(b) shows the final topology obtained by J. 

Du and N. Olhoff [29]. 
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(a) 

 

(b) 

Figure 5.8: Clamped-clamped beam: (a) Optimal topology for maximizing 

the second eigenfrequency (b) Results obtained by [29]. 
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5.1.3 
Clamped Supported Beam 

 Figure 5.9(a) and Figure 5.9(b) show, respectively, a clamped–supported 

beam and the corresponding polygonal finite element mesh. The final topology 

obtained for maximizing the fundamental eigenfrequency is illustrated in Figure 

5.9(c). We adopted     for penalizing the elastic stiffness matrix and       for 

the mass matrix. Optimal design obtained by J. Du and N. Olhoff  [29] is shown in 

Figure 5.9(d). 

 

     

Figure 5.9: Clamped-supported beam: (a) Geometry and boundary 

conditions; (b) Polygonal finite element mesh;  (c) Optimal topology; and (d) 

Optimal topology obtained by [29]. 

 

Figure 5.10(a) illustrates the convergence of the objective function (i.e. the 

fundamental eigenfrequency) and the next two eigenfrequencies with respect to 
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the number of iterations. Figure 5.10(b) shows the results obtained by J. Du and 

N. Olhoff  [29]. 

 

Figure 5.10: Clamped-supported beam: (a) Convergence of the first three 

eigenfrequencies; (b) Results obtained by [29]. 

 

Finally, Figure 5.11(a) shows the optimal topology obtained when the 

second eigenfrequency is maximized, considering the clamped-supported case 
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and polygonal finite elements. Figure 5.11(b) shows the final topology obtained 

by J. Du and N. Olhoff [29]. 

 

 

(a) 

 

(b) 

Figure 5.11: Clamped-supported beam: Optimal topology for maximizing 

the second eigenfrequency;(a) Present study;  (b) Results obtained by [29]. 

 

Table 5.1 summarizes the results obtained for maximizing the fundamental 

eigenfrequency         and also for maximizing the second eigenfrequency 

       , for the various types of boundary conditions: S – S (simply–supported), 

C – C (clamped–clamped), and C – S (clamped–supported). The results are 

compared to the ones obtained by J. Du and N. Olhoff [29]. 

 

Table 5.1: Maximum values of first and second eigenfrequencies. 

 Present work  Reference [29]   

  (       S – S  C – C C – S S – S C – C C – S 

      194.20  389.00  283.00  174.70  456.40  288.70  

      453.56  662.99  596.51  598.30  849.00  732.80  
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5.2. 
Topology optimization for buckling problems 

This example consists of a slender column that has a unit thickness 

modeled with 3000 polygonal finite elements. The main input parameters are    

     ,      , the Young’s modulus   and Poisson’s ratio   are          

and    , respectively.         is applied on the top corners, as illustrated in 

Figure 5.12(a). For the optimization process, we use a filter with radius         

         , penalization factor     for the elastic stiffness matrix, and     for 

the geometric stiffness matrix. The Ersatz parameter         , volume fraction 

is    , and the total number of iterations is    . 

            

Figure 5.12: Slender column subjected to a compression load: (a) 

Geometry and boundary conditions considered; (b) Polygonal finite element 

mesh. 

Figure 5.13 shows the optimal topology obtained for the buckling problem. 

As shown, the results are in good agreement with the ones obtained by M. P. 

Bendsøe and O. Sigmund [11]. 
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Figure 5.13: Optimal topology for maximizing the first eigenvalue (a) Using 

polygons (present study) ;(b) Using quads (present study) ;(c) Results obtained 

by [14]. 

 

 Figure 5.14 illustrates the convergence of the objective function (i.e. the 

first eigenvalue) with respect to the number of iterations, using polygonal 

meshes. Notice that the value of the critical load in the first iteration is         

                 and the maximum value of the critical load (obtained after 

200 iterations) is                 . Figure 5.15 shows the convergence of the 

objective function and the first five eigenvalues. 
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Figure 5.14: Convergence of the first eigenvalue using polygonal meshes. 

 

 

 

Figure 5.15: Convergence of the first five eigenvalues using polygonal 

meshes. 
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Finally, Figure 5.16 illustrates the deformed shape, first mode shape (with 

                   , and second mode shape (with                  ) 

after 200 iterations of the topology optimization process. 

 

Figure 5.16: Optimal topology obtained after 200 iterations, maximizing the 

first eigenvalue, using polygonal elements: (a) Deformed shape after 

convergence; (b) First mode shape; (c) Second mode shape. 
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6.  
Conclusions and Extensions 

 

6.1.  
Concluding Remarks 

In this work we presented a study of topology optimization applied to 

eigenvalue problems, such as the maximization of a natural frequency or a 

linearized buckling load, using polygonal finite element meshes in arbitrary two-

dimensional domains. 

Because we used gradient methods to optimize the structures, the 

sensitivities of the objective and constraint functions were very important. We 

discussed three sensitivity approaches, namely the FDM, the DDM, and the AM. 

The computational cost of each method depends on the number of times that the 

associated linear system of equations needs to be solved. While the DDM 

requires a solution of a linear system of equations for each design variable, the 

AM requires a solution of a linear system of equations for each output function of 

the problem. Therefore, the AM is shown to be the most efficient method for 

computing sensitivities, because in our case, the optimization problem is 

formulated with only one output function (i.e., a natural frequency or a buckling 

load) regardless of the number of design variables used. Note that the FDM is 

only used here for comparison purposes because of its well-known high 

computational cost. A typical problem that arises when we apply topology 

optimization to buckling problems is the appearance of low-density regions during 

the optimization process, which may generate spurious buckling modes. We 

addressed this problem by implementing a strategy that is based on the use of 

different penalization factors (for the elastic and geometric stiffness matrices). 

Finally, we presented several representative examples that demonstrated the 

robustness and efficiency of the proposed framework for topology optimization 

applied to both eigenfrequency and buckling problems.  
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6.2.  
Suggestions for Future Work 

The main suggestions for future research in this area are: 

 Extend the proposed framework to different structures such as plates 

and shells; 

 Investigate a typical problem, known as multiplicity of eigenvalues, 

which may appear when topology optimization is applied to eigenvalue 

problems. During the optimization process, it can be observed that 

while the first eigenvalue is increasing, the subsequent eigenvalues are 

decreasing, and gradually, the first two or more eigenvalues may 

converge to the same value although the corresponding eingenvectors 

may remain different; 

 We also propose to further investigate another typical problem, namely 

mode switching, which is usually observed when applying topology 

optimization to maximize the buckling load; 

 Consider stress constraints in the formulation of the topology 

optimization problem to avoid stress concentrations in the final 

topology; 

 Finally, with respect to the CPU time for computing the eigenvalue 

sensitivities, we propose to investigate a parallel topology optimization 

method to solve large-scale structural eigenvalue problems. 
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